A Non-iterative Bayesian Sampling Algorithm for Linear Regression Models with Scale Mixtures of Normal Distributions
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-016-9580-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
- G. J. M. Rosa & D. Gianola & C. R. Padovani, 2004. "Bayesian Longitudinal Data Analysis with Mixed Models and Thick-tailed Distributions using MCMC," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 855-873.
- Fernández, Carmen & Steel, Mark F.J., 2000.
"Bayesian Regression Analysis With Scale Mixtures Of Normals,"
Econometric Theory, Cambridge University Press, vol. 16(1), pages 80-101, February.
- Carmen Fernandez & Mark F J Steel, 1999. "Bayesian Regression Analysis with scale mixtures of normals," Edinburgh School of Economics Discussion Paper Series 27, Edinburgh School of Economics, University of Edinburgh.
- Aldo M. Garay & Heleno Bolfarine & Victor H. Lachos & Celso R.B. Cabral, 2015. "Bayesian analysis of censored linear regression models with scale mixtures of normal distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2694-2714, December.
- Victor H. Lachos & Celso R.B. Cabral & Carlos A. Abanto-Valle, 2012. "A non-iterative sampling Bayesian method for linear mixed models with normal independent distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 531-549, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ang Shan & Fengkai Yang, 2021. "Bayesian Inference for Finite Mixture Regression Model Based on Non-Iterative Algorithm," Mathematics, MDPI, vol. 9(6), pages 1-13, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lin, Tsung-I & Wang, Wan-Lun, 2024. "On moments of truncated multivariate normal/independent distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
- Guodong Shan & Yiheng Hou & Baisen Liu, 2020. "Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions," Computational Statistics, Springer, vol. 35(4), pages 2077-2092, December.
- Joshua C. C. Chan, 2018.
"Specification tests for time-varying parameter models with stochastic volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
- Joshua C.C. Chan, 2015. "Specification tests for time-varying parameter models with stochastic volatility," CAMA Working Papers 2015-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Laura Liu, 2017. "Density Forecasts in Panel Models: A semiparametric Bayesian Perspective," PIER Working Paper Archive 17-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Apr 2017.
- Carlos A. Abanto-Valle & Gabriel Rodríguez & Hernán B. Garrafa-Aragón, 2020. "Stochastic Volatility in Mean: Empirical Evidence from Stock Latin American Markets," Documentos de Trabajo / Working Papers 2020-481, Departamento de Economía - Pontificia Universidad Católica del Perú.
- Michelli Barros & Manuel Galea & Víctor Leiva & Manoel Santos-Neto, 2018. "Generalized Tobit models: diagnostics and application in econometrics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 145-167, January.
- Auray, Stéphane & Eyquem, Aurélien & Jouneau-Sion, Frédéric, 2014.
"Modeling tails of aggregate economic processes in a stochastic growth model,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 76-94.
- Stéphane Auray & Aurélien Eyquem & Fréderic Jouneau-Sion, 2012. "Modelling Tails of Aggregated Economic Processes in a Stochastic Growth Model," Working Papers 2012-29, Center for Research in Economics and Statistics.
- Stéphane Auray & Aurélien Eyquem & Frédéric Jouneau-Sion, 2014. "Modelling Tails of Aggregated Economic Processes in a Stochastic Growth Model," Post-Print halshs-00995703, HAL.
- Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
- Yongho Ko & Seungwoo Han, 2017. "A Duration Prediction Using a Material-Based Progress Management Methodology for Construction Operation Plans," Sustainability, MDPI, vol. 9(4), pages 1-12, April.
- Camila Borelli Zeller & Celso Rômulo Barbosa Cabral & Víctor Hugo Lachos & Luis Benites, 2019. "Finite mixture of regression models for censored data based on scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 89-116, March.
- Ferraz, V.R.S. & Moura, F.A.S., 2012. "Small area estimation using skew normal models," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2864-2874.
- Jung, Yeun Ji & Hobert, James P., 2014. "Spectral properties of MCMC algorithms for Bayesian linear regression with generalized hyperbolic errors," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 92-100.
- Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- De la Cruz, Rolando, 2008. "Bayesian non-linear regression models with skew-elliptical errors: Applications to the classification of longitudinal profiles," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 436-449, December.
- Sujay Mukhoti & Pritam Ranjan, 2016. "Mean-correction and Higher Order Moments for a Stochastic Volatility Model with Correlated Errors," Papers 1605.02418, arXiv.org.
- Miguel A. Juárez & Mark F. J. Steel, 2010.
"Non‐gaussian dynamic bayesian modelling for panel data,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(7), pages 1128-1154, November/.
- Juarez, Miguel A. & Steel, Mark F. J., 2006. "Non-Gaussian dynamic Bayesian modelling for panel data," MPRA Paper 450, University Library of Munich, Germany.
- Doppelhofer, Gernot & Weeks, Melvyn, 2011.
"Robust Growth Determinants,"
Discussion Paper Series in Economics
3/2011, Norwegian School of Economics, Department of Economics.
- Gernot Doppelhofer & Melvyn Weeks, 2011. "Robust Growth Determinants," CESifo Working Paper Series 3354, CESifo.
- Doppelhofer, G. & Weeks, M., 2011. "Robust Growth Determinants," Cambridge Working Papers in Economics 1117, Faculty of Economics, University of Cambridge.
- repec:cte:wsrepe:ws142618 is not listed on IDEAS
- Özgür Asar & David Bolin & Peter J. Diggle & Jonas Wallin, 2020. "Linear mixed effects models for non‐Gaussian continuous repeated measurement data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1015-1065, November.
- Fernandez, Carmen & Koop, Gary & Steel, Mark, 2000.
"A Bayesian analysis of multiple-output production frontiers,"
Journal of Econometrics, Elsevier, vol. 98(1), pages 47-79, September.
- Carmen Fernandez & Gary Koop & Mark F J Steel, 1999. "A Bayesian analysis of multiple-output production frontier," Edinburgh School of Economics Discussion Paper Series 21, Edinburgh School of Economics, University of Edinburgh.
- Rubio, Francisco Javier & Steel, Mark F. J., 2014. "Bayesian modelling of skewness and kurtosis with two-piece scale and shape transformations," MPRA Paper 57102, University Library of Munich, Germany.
More about this item
Keywords
Scale mixtures of normal distributions; EM algorithm; Inverse Bayesian formulae; Model selection; Gibbs sampling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:49:y:2017:i:4:d:10.1007_s10614-016-9580-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.