IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v49y2017i4d10.1007_s10614-016-9580-5.html
   My bibliography  Save this article

A Non-iterative Bayesian Sampling Algorithm for Linear Regression Models with Scale Mixtures of Normal Distributions

Author

Listed:
  • Fengkai Yang

    (Shandong University
    Shandong University)

  • Haijing Yuan

    (Shandong University
    Shandong University)

Abstract

The scale mixtures of Normal distributions are used as a robust alternative to the normal distribution in linear regression modelling, and a non-iterative Bayesian sampling algorithm is developed to obtain independently and identically distributed samples approximately from the observed posterior distributions, which eliminates the convergence problems in iterative Gibbs sampling. Model selection and influential analysis are conducted to choose the best fitted model and to detect the latent outliers. The performances of the methodologies are illustrated through several simulation studies by comparison with the Normal regression and Gibbs sampling, and finally, the US treasury bond prices data is analyzed using the proposed algorithm.

Suggested Citation

  • Fengkai Yang & Haijing Yuan, 2017. "A Non-iterative Bayesian Sampling Algorithm for Linear Regression Models with Scale Mixtures of Normal Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 579-597, April.
  • Handle: RePEc:kap:compec:v:49:y:2017:i:4:d:10.1007_s10614-016-9580-5
    DOI: 10.1007/s10614-016-9580-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-016-9580-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-016-9580-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abanto-Valle, C.A. & Bandyopadhyay, D. & Lachos, V.H. & Enriquez, I., 2010. "Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2883-2898, December.
    2. G. J. M. Rosa & D. Gianola & C. R. Padovani, 2004. "Bayesian Longitudinal Data Analysis with Mixed Models and Thick-tailed Distributions using MCMC," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 855-873.
    3. Fernández, Carmen & Steel, Mark F.J., 2000. "Bayesian Regression Analysis With Scale Mixtures Of Normals," Econometric Theory, Cambridge University Press, vol. 16(1), pages 80-101, February.
    4. Victor H. Lachos & Celso R.B. Cabral & Carlos A. Abanto-Valle, 2012. "A non-iterative sampling Bayesian method for linear mixed models with normal independent distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 531-549, July.
    5. Aldo M. Garay & Heleno Bolfarine & Victor H. Lachos & Celso R.B. Cabral, 2015. "Bayesian analysis of censored linear regression models with scale mixtures of normal distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2694-2714, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ang Shan & Fengkai Yang, 2021. "Bayesian Inference for Finite Mixture Regression Model Based on Non-Iterative Algorithm," Mathematics, MDPI, vol. 9(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Tsung-I & Wang, Wan-Lun, 2024. "On moments of truncated multivariate normal/independent distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    2. Guodong Shan & Yiheng Hou & Baisen Liu, 2020. "Bayesian robust estimation of partially functional linear regression models using heavy-tailed distributions," Computational Statistics, Springer, vol. 35(4), pages 2077-2092, December.
    3. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    4. Li, Haoxiang & Qin, Qian & Jones, Galin L., 2024. "Convergence analysis of data augmentation algorithms for Bayesian robust multivariate linear regression with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    5. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
    6. Ley, Eduardo & Steel, Mark F.J., 2012. "Mixtures of g-priors for Bayesian model averaging with economic applications," Journal of Econometrics, Elsevier, vol. 171(2), pages 251-266.
    7. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    8. Laura Liu, 2017. "Density Forecasts in Panel Models: A semiparametric Bayesian Perspective," PIER Working Paper Archive 17-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Apr 2017.
    9. Gernot Doppelhofer & Melvyn Weeks, 2011. "Robust Growth Determinants," CESifo Working Paper Series 3354, CESifo.
    10. Carlos A. Abanto-Valle & Gabriel Rodríguez & Hernán B. Garrafa-Aragón, 2020. "Stochastic Volatility in Mean: Empirical Evidence from Stock Latin American Markets," Documentos de Trabajo / Working Papers 2020-481, Departamento de Economía - Pontificia Universidad Católica del Perú.
    11. Michelli Barros & Manuel Galea & Víctor Leiva & Manoel Santos-Neto, 2018. "Generalized Tobit models: diagnostics and application in econometrics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 145-167, January.
    12. Víctor H. Lachos & Celso R. B. Cabral & Marcos O. Prates & Dipak K. Dey, 2019. "Flexible regression modeling for censored data based on mixtures of student-t distributions," Computational Statistics, Springer, vol. 34(1), pages 123-152, March.
    13. Wesley Bertoli & Katiane S. Conceição & Marinho G. Andrade & Francisco Louzada, 2018. "On the zero-modified Poisson–Shanker regression model and its application to fetal deaths notification data," Computational Statistics, Springer, vol. 33(2), pages 807-836, June.
    14. Rubio, Francisco Javier & Liseo, Brunero, 2014. "On the independence Jeffreys prior for skew-symmetric models," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 91-97.
    15. Salas-Gonzalez, Diego & Kuruoglu, Ercan E. & Ruiz, Diego P., 2009. "A heavy-tailed empirical Bayes method for replicated microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1535-1546, March.
    16. Bruno Ebner & Bernhard Klar & Simos G. Meintanis, 2018. "Fourier inference for stochastic volatility models with heavy-tailed innovations," Statistical Papers, Springer, vol. 59(3), pages 1043-1060, September.
    17. Auray, Stéphane & Eyquem, Aurélien & Jouneau-Sion, Frédéric, 2014. "Modeling tails of aggregate economic processes in a stochastic growth model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 76-94.
    18. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    19. Sujay Mukhoti & Pritam Ranjan, 2019. "A new class of discrete-time stochastic volatility model with correlated errors," Applied Economics, Taylor & Francis Journals, vol. 51(3), pages 259-277, January.
    20. Ahad Jamalizadeh & Tsung-I Lin, 2017. "A general class of scale-shape mixtures of skew-normal distributions: properties and estimation," Computational Statistics, Springer, vol. 32(2), pages 451-474, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:49:y:2017:i:4:d:10.1007_s10614-016-9580-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.