IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v65y2000i1p93-119.html
   My bibliography  Save this article

Bayesian inference for finite mixtures of generalized linear models with random effects

Author

Listed:
  • Peter Lenk
  • Wayne DeSarbo

Abstract

No abstract is available for this item.

Suggested Citation

  • Peter Lenk & Wayne DeSarbo, 2000. "Bayesian inference for finite mixtures of generalized linear models with random effects," Psychometrika, Springer;The Psychometric Society, vol. 65(1), pages 93-119, March.
  • Handle: RePEc:spr:psycho:v:65:y:2000:i:1:p:93-119
    DOI: 10.1007/BF02294188
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02294188
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02294188?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geert Soete & Wayne DeSarbo, 1991. "A latent class probit model for analyzing pick any/N data," Journal of Classification, Springer;The Classification Society, vol. 8(1), pages 45-63, January.
    2. Michel Wedel & Wayne DeSarbo, 1995. "A mixture likelihood approach for generalized linear models," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 21-55, March.
    3. Wagner Kamakura, 1991. "Estimating flexible distributions of ideal-points with external analysis of preferences," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 419-431, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    2. Ana Oliveira-Brochado & F. Vitorino Martins, 2006. "Examining the segment retention problem for the “Group Satellite” case," FEP Working Papers 220, Universidade do Porto, Faculdade de Economia do Porto.
    3. Pennings, Joost M.E. & Garcia, Philip & Irwin, Scott H. & Good, Darrel L., 2003. "How To Group Market Participants? Heterogeneity In Hedging Behavior," 2003 Annual meeting, July 27-30, Montreal, Canada 21963, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Coltman, Tim & Devinney, Timothy M. & Keating, Byron W., 2010. "Best-worst scaling approach to predict customer choice for 3PL services," MPRA Paper 40492, University Library of Munich, Germany.
    5. Heungsun Hwang & Marc Tomiuk, 2010. "Fuzzy clusterwise quasi-likelihood generalized linear models," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 255-270, December.
    6. Salvatore Ingrassia & Antonio Punzo & Giorgio Vittadini & Simona Minotti, 2015. "Erratum to: The Generalized Linear Mixed Cluster-Weighted Model," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 327-355, July.
    7. Pennings, Joost M.E. & Garcia, Philip & Irwin, Scott H., 2011. "Accounting for Heterogeneity in Hedging Behavior: Comparing & Evaluating Grouping Methods," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114787, European Association of Agricultural Economists.
    8. Grün, Bettina & Leisch, Friedrich, 2008. "FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i04).
    9. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    10. Wayne DeSarbo & Heungsun Hwang & Ashley Stadler Blank & Eelco Kappe, 2015. "Constrained Stochastic Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 516-534, June.
    11. Geert Soete & Willem Heiser, 1993. "A latent class unfolding model for analyzing single stimulus preference ratings," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 545-565, December.
    12. Maria Iannario & Domenico Piccolo, 2016. "A comprehensive framework of regression models for ordinal data," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 233-252, August.
    13. Joost M.E. Pennings & Scott H. Irwin & Darrel L. Good & Olga Isengildina, 2005. "Heterogeneity in the likelihood of market advisory service use by U.S. crop producers," Agribusiness, John Wiley & Sons, Ltd., vol. 21(1), pages 109-128.
    14. Michel Wedel & Wayne DeSarbo, 1995. "A mixture likelihood approach for generalized linear models," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 21-55, March.
    15. repec:jss:jstsof:28:i04 is not listed on IDEAS
    16. DeSarbo, Wayne S. & Choi, Jungwhan, 1998. "A latent structure double hurdle regression model for exploring heterogeneity in consumer search patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 423-455, November.
    17. David F. Larcker & Scott A. Richardson, 2004. "Fees Paid to Audit Firms, Accrual Choices, and Corporate Governance," Journal of Accounting Research, Wiley Blackwell, vol. 42(3), pages 625-658, June.
    18. Salvatore Ingrassia & Antonio Punzo, 2020. "Cluster Validation for Mixtures of Regressions via the Total Sum of Squares Decomposition," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 526-547, July.
    19. Hurley, Jeremiah & Mentzakis, Emmanouil & Walli-Attaei, Marjan, 2020. "Inequality aversion in income, health, and income-related health," Journal of Health Economics, Elsevier, vol. 70(C).
    20. Leisch, Friedrich, 2004. "FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i08).
    21. Sarrias, Mauricio, 2021. "A two recursive equation model to correct for endogeneity in latent class binary probit models," Journal of choice modelling, Elsevier, vol. 40(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:65:y:2000:i:1:p:93-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.