IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i9d10.1007_s00362-024-01612-7.html
   My bibliography  Save this article

Bayesian analysis of linear regression models with autoregressive symmetrical errors and incomplete data

Author

Listed:
  • Aldo M. Garay

    (Federal University of Pernambuco)

  • Francyelle L. Medina

    (Federal University of Pernambuco)

  • Suelem Torres de Freitas

    (Federal University of Pará)

  • Víctor H. Lachos

    (University of Connecticut)

Abstract

Observations collected over time are often autocorrelated rather than independent, and sometimes include incomplete information, for example censored values reported as less or more than a level of detection and/or missing values. Another complication arises when the data departs significantly from normality, such as asymmetry and fat tails. In this paper, we propose Bayesian analysis of linear regression models with autoregressive symmetrical errors. The model considers the symmetric class of scale mixture of normal distributions, which include the normal, slash, contaminated normal and Student-t distributions as special cases. A Markov chain Monte Carlo (MCMC) algorithm is tailored to obtain Bayesian posterior distributions of the unknown quantities of interest. The likelihood function is utilized to compute some Bayesian model selection measures. We evaluate the proposed model under different settings of censored and/or missing levels using simulated data. Finally, we illustrate the usage of our proposal through the analysis of a real dataset.

Suggested Citation

  • Aldo M. Garay & Francyelle L. Medina & Suelem Torres de Freitas & Víctor H. Lachos, 2024. "Bayesian analysis of linear regression models with autoregressive symmetrical errors and incomplete data," Statistical Papers, Springer, vol. 65(9), pages 5649-5690, December.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:9:d:10.1007_s00362-024-01612-7
    DOI: 10.1007/s00362-024-01612-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01612-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01612-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:9:d:10.1007_s00362-024-01612-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.