IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9532-d1004799.html
   My bibliography  Save this article

Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo

Author

Listed:
  • Kokou Amega

    (West African Science Service Centre on Climate Change and Adapted Land Use (Wascal), University Abdou Moumouni of Niamey, Niamey P.O. Box 10662, Niger)

  • Yendoubé Laré

    (Laboratoire d’énergie Solaire, Département de Physique, Faculté des Sciences, Université de Lomé, Lomé P.O. Box 1515, Togo
    Centre d’Excellence Régional pour la Maîtrise de l’Electricité (CERME), University of Lomé, Lomé P.O. Box 1515, Togo)

  • Ramchandra Bhandari

    (Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), Technische Hochschule Köln, Betzdorfer Strasse 2, 50679 Cologne, Germany)

  • Yacouba Moumouni

    (Department of Electrical and Electronics Engineering Higher Colleges of Technology, Ras Al Khaimah Women’s Campus, Ras Al Khaimah P.O. Box 4792, United Arab Emirates)

  • Aklesso Y. G. Egbendewe

    (Faculty of Economic and Management Sciences, University of Lomé, Lomé P.O. Box 1515, Togo)

  • Windmanagda Sawadogo

    (Chair for Regional Climate and Hydrology, Institute of Geography, University of Augsburg, 86159 Augsburg, Germany)

  • Saidou Madougou

    (Laboratory of Energetics, Electronics, Electrical Engineering, Automation and Industrial Computing (LAERT-LA2EI), University Abdou Moumouni of Niamey, Niamey P.O. Box 10963, Niger)

Abstract

A smart and decentralized electrical system, powered by grid-connected renewable energy (RE) with a reliable storage system, has the potential to change the future socio-economic dynamics. Climate change may, however, affect the potential of RE and its related technologies. This study investigated the impact of climate change on photovoltaic cells’ temperature response and energy potential under two CO 2 emission scenarios, RCP2.6 and 8.5, for the near future (2024–2040) and mid-century (2041–2065) in Togo. An integrated Regional Climate Model version 4 (RegCM4) from the CORDEX-CORE initiative datasets has been used as input. The latter platform recorded various weather variables, such as solar irradiance, air temperature, wind speed and direction, and relative humidity. Results showed that PV cells’ temperature would likely rise over all five regions in the country and may trigger a decline in the PV potential under RCP2.6 and 8.5. However, the magnitude of the induced change, caused by the changing climate, depended on two major factors: (1) the PV technology and (2) geographical position. Results also revealed that these dissimilarities were more pronounced under RCP8.5 with the amorphous technology. It was further found that, nationally, the average cell temperature would have risen by 1 °C and 1.82 °C under RCP2.6 and 8.5, in that order, during the 2024–2065 period for a-Si technology. Finally, the PV potential would likely decrease, on average, by 0.23% for RCP2.6 and 0.4% for RCP8.5 for a-Si technology.

Suggested Citation

  • Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9532-:d:1004799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9532/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9532/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rajvikram Madurai Elavarasan & Leoponraj Selvamanohar & Kannadasan Raju & Raghavendra Rajan Vijayaraghavan & Ramkumar Subburaj & Mohammad Nurunnabi & Irfan Ahmad Khan & Syed Afridhis & Akshaya Harihar, 2020. "A Holistic Review of the Present and Future Drivers of the Renewable Energy Mix in Maharashtra, State of India," Sustainability, MDPI, vol. 12(16), pages 1-33, August.
    2. Rajvikram Madurai Elavarasan & G. M. Shafiullah & Nallapaneni Manoj Kumar & Sanjeevikumar Padmanaban, 2019. "A State-of-the-Art Review on the Drive of Renewables in Gujarat, State of India: Present Situation, Barriers and Future Initiatives," Energies, MDPI, vol. 13(1), pages 1-30, December.
    3. Kafka, Jennifer L. & Miller, Mark A., 2019. "A climatology of solar irradiance and its controls across the United States: Implications for solar panel orientation," Renewable Energy, Elsevier, vol. 135(C), pages 897-907.
    4. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    5. Clastres, Cédric, 2011. "Smart grids: Another step towards competition, energy security and climate change objectives," Energy Policy, Elsevier, vol. 39(9), pages 5399-5408, September.
    6. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    7. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    8. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    9. Boilley, Alexandre & Wald, Lucien, 2015. "Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface," Renewable Energy, Elsevier, vol. 75(C), pages 135-143.
    10. Methee Srikranjanapert & Siripha Junlakarn & Naebboon Hoonchareon, 2021. "How an Integration of Home Energy Management and Battery System Affects the Economic Benefits of Residential PV System Owners in Thailand," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    11. Mavromatakis, F. & Makrides, G. & Georghiou, G. & Pothrakis, A. & Franghiadakis, Y. & Drakakis, E. & Koudoumas, E., 2010. "Modeling the photovoltaic potential of a site," Renewable Energy, Elsevier, vol. 35(7), pages 1387-1390.
    12. Litjens, G.B.M.A. & Worrell, E. & van Sark, W.G.J.H.M., 2018. "Economic benefits of combining self-consumption enhancement with frequency restoration reserves provision by photovoltaic-battery systems," Applied Energy, Elsevier, vol. 223(C), pages 172-187.
    13. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    14. Detlef Vuuren & Elke Stehfest & Michel Elzen & Tom Kram & Jasper Vliet & Sebastiaan Deetman & Morna Isaac & Kees Klein Goldewijk & Andries Hof & Angelica Mendoza Beltran & Rineke Oostenrijk & Bas Ruij, 2011. "RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C," Climatic Change, Springer, vol. 109(1), pages 95-116, November.
    15. Santika, Wayan G. & Anisuzzaman, M. & Simsek, Yeliz & Bahri, Parisa A. & Shafiullah, G.M. & Urmee, Tania, 2020. "Implications of the Sustainable Development Goals on national energy demand: The case of Indonesia," Energy, Elsevier, vol. 196(C).
    16. Cédric Clastres, 2011. "Smart grids : Another step towards competition, energy security and climate change objectives," Post-Print halshs-00617702, HAL.
    17. N. Elguindi & F. Giorgi & U. Turuncoglu, 2014. "Assessment of CMIP5 global model simulations over the subset of CORDEX domains used in the Phase I CREMA," Climatic Change, Springer, vol. 125(1), pages 7-21, July.
    18. Römer, Benedikt & Reichhart, Philipp & Kranz, Johann & Picot, Arnold, 2012. "The role of smart metering and decentralized electricity storage for smart grids: The importance of positive externalities," Energy Policy, Elsevier, vol. 50(C), pages 486-495.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murilo Eduardo Casteroba Bento, 2023. "Wide-Area Measurement-Based Two-Level Control Design to Tolerate Permanent Communication Failures," Energies, MDPI, vol. 16(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    2. Michael Funke & Yu-Fu Chen & Nicole Glanemann, 2011. "Time is Running Out: The 2°C Target and Optimal Climate Policies," Quantitative Macroeconomics Working Papers 21111, Hamburg University, Department of Economics.
    3. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "The 1000 GtC coal question: Are cases of vastly expanded future coal combustion still plausible?," Energy Economics, Elsevier, vol. 65(C), pages 16-31.
    4. Sawadogo, Windmanagda & Abiodun, Babatunde J. & Okogbue, Emmanuel C., 2020. "Impacts of global warming on photovoltaic power generation over West Africa," Renewable Energy, Elsevier, vol. 151(C), pages 263-277.
    5. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    6. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    7. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    8. Marcinkowski, Paweł & Piniewski, Mikołaj, 2024. "Future changes in crop yield over Poland driven by climate change, increasing atmospheric CO2 and nitrogen stress," Agricultural Systems, Elsevier, vol. 213(C).
    9. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    10. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    11. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    12. Martínez-Lao, Juan & Montoya, Francisco G. & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2017. "Electric vehicles in Spain: An overview of charging systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 970-983.
    13. Ponce, Pedro & Polasko, Kenneth & Molina, Arturo, 2016. "End user perceptions toward smart grid technology: Acceptance, adoption, risks, and trust," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 587-598.
    14. Timothé Beaufils & Pierre-Olivier Pineau, 2018. "Structures tarifaires et spirale de la mort : État des lieux des pratiques de tarification dans la distribution d’électricité résidentielle," CIRANO Working Papers 2018s-27, CIRANO.
    15. Yanshan Yu & Jin Yang & Bin Chen, 2012. "The Smart Grids in China—A Review," Energies, MDPI, vol. 5(5), pages 1-18, May.
    16. Mabee, Warren E. & Mannion, Justine & Carpenter, Tom, 2012. "Comparing the feed-in tariff incentives for renewable electricity in Ontario and Germany," Energy Policy, Elsevier, vol. 40(C), pages 480-489.
    17. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    18. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    19. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    20. Qun'ou Jiang & Yuwei Cheng & Qiutong Jin & Xiangzheng Deng & Yuanjing Qi, 2015. "Simulation of Forestland Dynamics in a Typical Deforestation and Afforestation Area under Climate Scenarios," Energies, MDPI, vol. 8(10), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9532-:d:1004799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.