IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v2y2020i3p18-345d405745.html
   My bibliography  Save this article

Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina

Author

Listed:
  • Indira Pokhrel

    (School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, 1230 Lincoln Drive, Carbondale, IL 62901-6603, USA)

  • Ajay Kalra

    (School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, 1230 Lincoln Drive, Carbondale, IL 62901-6603, USA)

  • Md Mafuzur Rahaman

    (AECOM, 2380 McGee St Suite 200, Kansas City, MO 64108, USA)

  • Ranjeet Thakali

    (Bayer-Risse Engineering, Inc., 78 State Highway 173 W, Suite#6, Hampton, NJ 08827, USA)

Abstract

Hydrological extremes associated with climate change are becoming an increasing concern all over the world. Frequent flooding, one of the extremes, needs to be analyzed while considering climate change to mitigate flood risk. This study forecast streamflow and evaluate risk of flooding in the Neuse River, North Carolina considering future climatic scenarios, and comparing them with an existing Federal Emergency Management Agency study. The cumulative distribution function transformation method was adopted for bias correction to reduce the uncertainty present in the Coupled Model Intercomparison Project Phase 6 (CMIP6) streamflow data. To calculate 100-year and 500-year flood discharges, the Generalized Extreme Value (L-Moment) was utilized on bias-corrected multimodel ensemble data with different climate projections. Out of all projections, shared socio-economic pathways (SSP5-8.5) exhibited the maximum design streamflow, which was routed through a hydraulic model, the Hydrological Engineering Center’s River Analysis System (HEC-RAS), to generate flood inundation and risk maps. The result indicates an increase in flood inundation extent compared to the existing study, depicting a higher flood hazard and risk in the future. This study highlights the importance of forecasting future flood risk and utilizing the projected climate data to obtain essential information to determine effective strategic plans for future floodplain management.

Suggested Citation

  • Indira Pokhrel & Ajay Kalra & Md Mafuzur Rahaman & Ranjeet Thakali, 2020. "Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina," Forecasting, MDPI, vol. 2(3), pages 1-23, August.
  • Handle: RePEc:gam:jforec:v:2:y:2020:i:3:p:18-345:d:405745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/2/3/18/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/2/3/18/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Congressional Budget Office, 2019. "Expected Costs of Damage From Hurricane Winds and Storm-Related Flooding," Reports 55019, Congressional Budget Office.
    2. Alen Shrestha & Md Mafuzur Rahaman & Ajay Kalra & Rohit Jogineedi & Pankaj Maheshwari, 2020. "Climatological Drought Forecasting Using Bias Corrected CMIP6 Climate Data: A Case Study for India," Forecasting, MDPI, vol. 2(2), pages 1-26, April.
    3. Nigel Arnell & Simon Gosling, 2016. "The impacts of climate change on river flood risk at the global scale," Climatic Change, Springer, vol. 134(3), pages 387-401, February.
    4. A. Kay & H. Davies & V. Bell & R. Jones, 2009. "Comparison of uncertainty sources for climate change impacts: flood frequency in England," Climatic Change, Springer, vol. 92(1), pages 41-63, January.
    5. Frans Klijn & Heidi Kreibich & Hans Moel & Edmund Penning-Rowsell, 2015. "Adaptive flood risk management planning based on a comprehensive flood risk conceptualisation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 845-864, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Swarupa Paudel & Neekita Joshi & Ajay Kalra, 2023. "Projected Future Flooding Pattern of Wabash River in Indiana and Fountain Creek in Colorado: An Assessment Utilizing Bias-Corrected CMIP6 Climate Data," Forecasting, MDPI, vol. 5(2), pages 1-19, April.
    2. Minxue He & Haksu Lee, 2021. "Advances in Hydrological Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swarupa Paudel & Neekita Joshi & Ajay Kalra, 2023. "Projected Future Flooding Pattern of Wabash River in Indiana and Fountain Creek in Colorado: An Assessment Utilizing Bias-Corrected CMIP6 Climate Data," Forecasting, MDPI, vol. 5(2), pages 1-19, April.
    2. Meho Saša Kovačević & Lovorka Librić & Gordana Ivoš & Anita Cerić, 2020. "Application of Reliability Analysis for Risk Ranking in a Levee Reconstruction Project," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    3. Yi He & Desmond Manful & Rachel Warren & Nicole Forstenhäusler & Timothy J. Osborn & Jeff Price & Rhosanna Jenkins & Craig Wallace & Dai Yamazaki, 2022. "Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries," Climatic Change, Springer, vol. 170(1), pages 1-21, January.
    4. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    5. Philip Antwi-Agyei & Frank Baffour-Ata & Sarah Koomson & Nana Kwame Kyeretwie & Nana Barimah Nti & Afia Oforiwaa Owusu & Fukaiha Abdul Razak, 2023. "Drivers and coping mechanisms for floods: experiences of residents in urban Kumasi, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2477-2500, March.
    6. Li-Chi Chiang & Indrajeet Chaubey & Nien-Ming Hong & Yu-Pin Lin & Tao Huang, 2012. "Implementation of BMP Strategies for Adaptation to Climate Change and Land Use Change in a Pasture-Dominated Watershed," IJERPH, MDPI, vol. 9(10), pages 1-31, October.
    7. Bushra Khalid & Bueh Cholaw & Débora Souza Alvim & Shumaila Javeed & Junaid Aziz Khan & Muhammad Asif Javed & Azmat Hayat Khan, 2018. "Riverine flood assessment in Jhang district in connection with ENSO and summer monsoon rainfall over Upper Indus Basin for 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(2), pages 971-993, June.
    8. Mashkhura Babadjanova & Ihtiyor Bobojonov & Maksud Bekchanov & Lena Kuhn & Thomas Glauben, 2024. "Can domestic wheat farming meet the climate change-induced challenges of national food security in Uzbekistan?," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 40(3), pages 448-462, May.
    9. Nima Fayaz & Laura E. Condon & David G. Chandler, 2020. "Evaluating the Sensitivity of Projected Reservoir Reliability to the Choice of Climate Projection: A Case Study of Bull Run Watershed, Portland, Oregon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1991-2009, April.
    10. Lin, Yatang & McDermott, Thomas K.J. & Michaels, Guy, 2024. "Cities and the sea level," Journal of Urban Economics, Elsevier, vol. 143(C).
    11. Simon Gosling & Glenn McGregor & Jason Lowe, 2012. "The benefits of quantifying climate model uncertainty in climate change impacts assessment: an example with heat-related mortality change estimates," Climatic Change, Springer, vol. 112(2), pages 217-231, May.
    12. Laura Devitt & Jeffrey Neal & Gemma Coxon & James Savage & Thorsten Wagener, 2023. "Flood hazard potential reveals global floodplain settlement patterns," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Shao Sun & Zunya Wang & Chuanye Hu & Ge Gao, 2021. "Understanding Climate Hazard Patterns and Urban Adaptation Measures in China," Sustainability, MDPI, vol. 13(24), pages 1-12, December.
    14. Osberghaus, Daniel & Reif, Christiane, 2021. "How do different compensation schemes and loss experience affect insurance decisions? Experimental evidence from two independent and heterogeneous samples," Ecological Economics, Elsevier, vol. 187(C).
    15. Angela Connelly & Jeremy Carter & John Handley & Stephen Hincks, 2018. "Enhancing the Practical Utility of Risk Assessments in Climate Change Adaptation," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    16. Samantaray, Alok Kumar & Ramadas, Meenu & Panda, Rabindra Kumar, 2022. "Changes in drought characteristics based on rainfall pattern drought index and the CMIP6 multi-model ensemble," Agricultural Water Management, Elsevier, vol. 266(C).
    17. Viola, Flavio M. & Paiva, Susana L.D. & Savi, Marcelo A., 2010. "Analysis of the global warming dynamics from temperature time series," Ecological Modelling, Elsevier, vol. 221(16), pages 1964-1978.
    18. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
    19. Frans Klijn & Marjolein Mens & Nathalie Asselman, 2015. "Flood risk management for an uncertain future: economic efficiency and system robustness perspectives compared for the Meuse River (Netherlands)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 1011-1026, August.
    20. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:2:y:2020:i:3:p:18-345:d:405745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.