IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v22y2008i10p1461-1475.html
   My bibliography  Save this article

Climate Variability Influences on Hydrological Responses of a Large Himalayan Basin

Author

Listed:
  • Manohar Arora
  • Pratap Singh
  • N. Goel
  • R. Singh

Abstract

The hydrological cycle, a fundamental component of climate is likely to be altered in important ways due to climate change. In this study, the historical daily runoff has been simulated for the Chenab River basin up to Salal gauging site using a simple conceptual snowmelt model (SNOWMOD). The model has been used to study the impact of plausible hypothetical scenarios of temperature and rainfall on the melt characteristics and daily runoff of the Chenab River basin. The average value of increase in snowmelt runoff for T + 1°C, T + 2°C and T + 3°C scenarios are obtained to be 10, 28 and 43%, respectively. Whereas, the average value of increase in total streamflow runoff for T + 1°C, T + 2°C and T + 3°C are obtained to be 7, 19 and 28%, respectively. Changes in rainfall by −10 and + 10% vary the average annual snowmelt runoff over the T + 2°C scenario by −1% and + 1% only. The result shows that melt is much more sensitive to increase in temperature than to rainfall. Copyright Springer Science+Business Media B.V. 2008

Suggested Citation

  • Manohar Arora & Pratap Singh & N. Goel & R. Singh, 2008. "Climate Variability Influences on Hydrological Responses of a Large Himalayan Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1461-1475, October.
  • Handle: RePEc:spr:waterr:v:22:y:2008:i:10:p:1461-1475
    DOI: 10.1007/s11269-007-9237-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-007-9237-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-007-9237-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murari Lal, 2001. "Climatic Change — Implications for India’s Water Resources," Journal of Social and Economic Development, Institute for Social and Economic Change, Bangalore, vol. 3(1), pages 57-97, January-J.
    2. Chong-yu Xu, 2000. "Modelling the Effects of Climate Change on Water Resources in Central Sweden," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(3), pages 177-189, June.
    3. Chong-yu Xu, 1999. "Climate Change and Hydrologic Models: A Review of Existing Gaps and Recent Research Developments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(5), pages 369-382, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adlul Islam & Alok Sikka & B. Saha & Anamika Singh, 2012. "Streamflow Response to Climate Change in the Brahmani River Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1409-1424, April.
    2. Anand Verdhen & Bhagu Chahar & Om Sharma, 2014. "Snowmelt Modelling Approaches in Watershed Models: Computation and Comparison of Efficiencies under Varying Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3439-3453, September.
    3. Deepak Srivastava & Amit Kumar & Akshaya Verma & Siddharth Swaroop, 2014. "Analysis of Climate and Melt-runoff in Dunagiri Glacier of Garhwal Himalaya (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3035-3055, August.
    4. Rajesh Kumar & Shaktiman Singh & Ramesh Kumar & Atar Singh & Anshuman Bhardwaj & Lydia Sam & Surjeet Singh Randhawa & Akhilesh Gupta, 2016. "Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3475-3492, August.
    5. Bekele Debele & Raghavan Srinivasan & A. Gosain, 2010. "Comparison of Process-Based and Temperature-Index Snowmelt Modeling in SWAT," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1065-1088, April.
    6. Sanjay Jain & Ajanta Goswami & Arun Saraf, 2010. "Assessment of Snowmelt Runoff Using Remote Sensing and Effect of Climate Change on Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(9), pages 1763-1777, July.
    7. Marco Masetti & Guglielmina Diolaiuti & Carlo D’Agata & Claudio Smiraglia, 2010. "Hydrological Characterization of an Ice-Contact Lake: Miage Lake (Monte Bianco, Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1677-1696, June.
    8. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chesheng Zhan & Sidong Zeng & Shanshan Jiang & Huixiao Wang & Wen Ye, 2014. "An Integrated Approach for Partitioning the Effect of Climate Change and Human Activities on Surface Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3843-3858, September.
    2. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    3. Jew Das & Nanduri V. Umamahesh, 2016. "Downscaling Monsoon Rainfall over River Godavari Basin under Different Climate-Change Scenarios," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5575-5587, December.
    4. Thanh Le & Deg-Hyo Bae, 2013. "Evaluating the Utility of IPCC AR4 GCMs for Hydrological Application in South Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3227-3246, July.
    5. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.
    6. Kim, Ungtae & Kaluarachchi, Jagath J. & Smakhtin, Vladimir U., 2008. "Climate change impacts on hydrology and water resources of the Upper Blue Nile River Basin, Ethiopia," IWMI Research Reports 53025, International Water Management Institute.
    7. Md. Islam & Toshiya Aramaki & Keisuke Hanaki, 2005. "Development and Application of an Integrated Water Balance Model to Study the Sensitivity of the Tokyo Metropolitan Area Water Availability Scenario to Climatic Changes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(4), pages 423-445, August.
    8. Zhe Yuan & Denghua Yan & Zhiyong Yang & Jijun Xu & Junjun Huo & Yanlai Zhou & Cheng Zhang, 2018. "Attribution assessment and projection of natural runoff change in the Yellow River Basin of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 27-49, January.
    9. Lin Dou & Mingbin Huang & Yang Hong, 2009. "Statistical Assessment of the Impact of Conservation Measures on Streamflow Responses in a Watershed of the Loess Plateau, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1935-1949, August.
    10. C.-Y. Xu & V. P. Singh, 2004. "Review on Regional Water Resources Assessment Models under Stationary and Changing Climate," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(6), pages 591-612, December.
    11. Paul Block & Kenneth Strzepek, 2011. "Power Ahead: Meeting Ethiopia's Energy Needs Under a Changing Climate," WIDER Working Paper Series wp-2011-090, World Institute for Development Economic Research (UNU-WIDER).
    12. Kashish Sadhwani & T. I. Eldho, 2023. "Assessing the Vulnerability of Water Balance to Climate Change at River Basin Scale in Humid Tropics: Implications for a Sustainable Water Future," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    13. Heike Wanke & Armin Dünkeloh & Peter Udluft, 2008. "Groundwater Recharge Assessment for the Kalahari Catchment of North-eastern Namibia and North-western Botswana with a Regional-scale Water Balance Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(9), pages 1143-1158, September.
    14. Mustafa Goodarzi & Jahangir Abedi-Koupai & Manouchehr Heidarpour & Hamid Reza Safavi, 2016. "Evaluation of the Effects of Climate Change on Groundwater Recharge Using a Hybrid Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 133-148, January.
    15. Eitzinger, J. & Stastna, M. & Zalud, Z. & Dubrovsky, M., 2003. "A simulation study of the effect of soil water balance and water stress on winter wheat production under different climate change scenarios," Agricultural Water Management, Elsevier, vol. 61(3), pages 195-217, July.
    16. Z. Xu & Y. Chen & J. Li, 2004. "Impact of Climate Change on Water Resources in the Tarim River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(5), pages 439-458, October.
    17. Slobodan P. Simonovic, 2017. "Bringing Future Climatic Change into Water Resources Management Practice Today," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2933-2950, August.
    18. Mustafa Al-Mukhtar & Volkmar Dunger & Broder Merkel, 2014. "Assessing the Impacts of Climate Change on Hydrology of the Upper Reach of the Spree River: Germany," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2731-2749, August.
    19. Xumin Zhang & Simin Qu & Jijie Shen & Yingbing Chen & Xiaoqiang Yang & Peng Jiang & Peng Shi, 2023. "Effect of Distinct Evaluation Objectives on Different Precipitation Downscaling Methods and the Corresponding Potential Impacts on Catchment Runoff Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 1913-1930, March.
    20. Adlul Islam & Alok Sikka & B. Saha & Anamika Singh, 2012. "Streamflow Response to Climate Change in the Brahmani River Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1409-1424, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:22:y:2008:i:10:p:1461-1475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.