IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i13p4747-4763.html
   My bibliography  Save this article

Estimation of the Change in Lake Water Level by Artificial Intelligence Methods

Author

Listed:
  • Meral Buyukyildiz
  • Gulay Tezel
  • Volkan Yilmaz

Abstract

In this study, five different artificial intelligence methods, including Artificial Neural Networks based on Particle Swarm Optimization (PSO-ANN), Support Vector Regression (SVR), Multi- Layer Artificial Neural Networks (MLP), Radial Basis Neural Networks (RBNN) and Adaptive Network Based Fuzzy Inference System (ANFIS), were used to estimate monthly water level change in Lake Beysehir. By using different input combinations consisting of monthly Inflow - Lost flow (I), Precipitation (P), Evaporation (E) and Outflow (O), efforts were made to estimate the change in water level (L). Performance of models established was evaluated using root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R 2 ). According to the results of models, ε-SVR model was obtained as the most successful model to estimate monthly water level of Lake Beysehir. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Meral Buyukyildiz & Gulay Tezel & Volkan Yilmaz, 2014. "Estimation of the Change in Lake Water Level by Artificial Intelligence Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4747-4763, October.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:13:p:4747-4763
    DOI: 10.1007/s11269-014-0773-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0773-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0773-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Sulaiman & Ahmed El-Shafie & Othman Karim & Hassan Basri, 2011. "Improved Water Level Forecasting Performance by Using Optimal Steepness Coefficients in an Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2525-2541, August.
    2. Veysel Güldal & Hakan Tongal, 2010. "Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 105-128, January.
    3. Hossein Kakahaji & Hamed Banadaki & Abbas Kakahaji & Abdulamir Kakahaji, 2013. "Prediction of Urmia Lake Water-Level Fluctuations by Using Analytical, Linear Statistic and Intelligent Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4469-4492, October.
    4. Bagher Shirmohammadi & Mehdi Vafakhah & Vahid Moosavi & Alireza Moghaddamnia, 2013. "Application of Several Data-Driven Techniques for Predicting Groundwater Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 419-432, January.
    5. Ahmed El-Shafie & Mahmoud Taha & Aboelmagd Noureldin, 2007. "A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 533-556, March.
    6. Nariman Valizadeh & Ahmed El-Shafie, 2013. "Forecasting the Level of Reservoirs Using Multiple Input Fuzzification in ANFIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(9), pages 3319-3331, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam P. Piotrowski & Maciej J. Napiorkowski & Monika Kalinowska & Jaroslaw J. Napiorkowski & Marzena Osuch, 2016. "Are Evolutionary Algorithms Effective in Calibrating Different Artificial Neural Network Types for Streamwater Temperature Prediction?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1217-1237, February.
    2. Monidipa Das & Soumya K. Ghosh & V. M. Chowdary & A. Saikrishnaveni & R. K. Sharma, 2016. "A Probabilistic Nonlinear Model for Forecasting Daily Water Level in Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3107-3122, July.
    3. Yuxin Zhu & Jianzhong Zhou & Yongchuan Zhang & Zhiqiang Jiang & Benjun Jia & Wei Fang, 2022. "Optimal Energy Storage Operation Chart and Output Distribution of Cascade Reservoirs Based on Operating Rules Derivation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5751-5766, November.
    4. Imad Antoine Ibrahim, 2020. "Legal Implications of the Use of Big Data in the Transboundary Water Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 1139-1153, February.
    5. Jalal Shiri & Shahaboddin Shamshirband & Ozgur Kisi & Sepideh Karimi & Seyyed M Bateni & Seyed Hossein Hosseini Nezhad & Arsalan Hashemi, 2016. "Prediction of Water-Level in the Urmia Lake Using the Extreme Learning Machine Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5217-5229, November.
    6. Serkan Ozdemir & Sevgi Ozkan Yildirim, 2023. "Prediction of Water Level in Lakes by RNN-Based Deep Learning Algorithms to Preserve Sustainability in Changing Climate and Relationship to Microcystin," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    7. Mohammad Najafzadeh & Ahmed Sattar, 2015. "Neuro-Fuzzy GMDH Approach to Predict Longitudinal Dispersion in Water Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2205-2219, May.
    8. Mohammad Rezaie-Balf & Zahra Zahmatkesh & Sungwon Kim, 2017. "Soft Computing Techniques for Rainfall-Runoff Simulation: Local Non–Parametric Paradigm vs. Model Classification Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3843-3865, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2014. "Two-Stage Pumping Control Model for Flood Mitigation in Inundated Urban Drainage Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 425-444, January.
    2. Hadi Sanikhani & Ozgur Kisi, 2012. "River Flow Estimation and Forecasting by Using Two Different Adaptive Neuro-Fuzzy Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1715-1729, April.
    3. Ahmed El-Shafie & Ali Najah & Humod Alsulami & Heerbod Jahanbani, 2014. "Optimized Neural Network Prediction Model for Potential Evapotranspiration Utilizing Ensemble Procedure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 947-967, March.
    4. Gokmen Tayfur & Ata Nadiri & Asghar Moghaddam, 2014. "Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1173-1184, March.
    5. Andres Ticlavilca & Mac McKee, 2011. "Multivariate Bayesian Regression Approach to Forecast Releases from a System of Multiple Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 523-543, January.
    6. Samad Emamgholizadeh & Khadije Moslemi & Gholamhosein Karami, 2014. "Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5433-5446, December.
    7. Isa Ebtehaj & Hossein Bonakdari, 2014. "Performance Evaluation of Adaptive Neural Fuzzy Inference System for Sediment Transport in Sewers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4765-4779, October.
    8. Ahmed El-Shafie & Amr El-Shafie & Muhammad Mukhlisin, 2014. "New Approach: Integrated Risk-Stochastic Dynamic Model for Dam and Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2093-2107, June.
    9. Nariman Valizadeh & Majid Mirzaei & Mohammed Falah Allawi & Haitham Abdulmohsin Afan & Nuruol Syuhadaa Mohd & Aini Hussain & Ahmed El-Shafie, 2017. "Artificial intelligence and geo-statistical models for stream-flow forecasting in ungauged stations: state of the art," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1377-1392, April.
    10. Hossein Bonakdari & Isa Ebtehaj & Pijush Samui & Bahram Gharabaghi, 2019. "Lake Water-Level fluctuations forecasting using Minimax Probability Machine Regression, Relevance Vector Machine, Gaussian Process Regression, and Extreme Learning Machine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3965-3984, September.
    11. Hadi Sanikhani & Ozgur Kisi & Mohammad Nikpour & Yagob Dinpashoh, 2012. "Estimation of Daily Pan Evaporation Using Two Different Adaptive Neuro-Fuzzy Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4347-4365, December.
    12. Yicheng Gong & Yongxiang Zhang & Shuangshuang Lan & Huan Wang, 2016. "A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 375-391, January.
    13. Yicheng Gong & Yongxiang Zhang & Shuangshuang Lan & Huan Wang, 2016. "A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 375-391, January.
    14. Zhang, Zixiong & Gong, Yicheng & Wang, Zhongjing, 2018. "Accessible remote sensing data based reference evapotranspiration estimation modelling," Agricultural Water Management, Elsevier, vol. 210(C), pages 59-69.
    15. Sabah Saadi Fayaed & Seef Saadi Fiyadh & Wong Jee Khai & Ali Najah Ahmed & Haitham Abdulmohsin Afan & Rusul Khaleel Ibrahim & Chow Ming Fai & Suhana Koting & Nuruol Syuhadaa Mohd & Wan Zurina Binti Ja, 2019. "Improving Dam and Reservoir Operation Rules Using Stochastic Dynamic Programming and Artificial Neural Network Integration Model," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    16. Xianming Dou & Yongguo Yang & Jinhui Luo, 2018. "Estimating Forest Carbon Fluxes Using Machine Learning Techniques Based on Eddy Covariance Measurements," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
    17. Maryam Shafaei & Ozgur Kisi, 2016. "Lake Level Forecasting Using Wavelet-SVR, Wavelet-ANFIS and Wavelet-ARMA Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 79-97, January.
    18. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    19. Wensheng Wang & Juliang Jin & Yueqing Li, 2009. "Prediction of Inflow at Three Gorges Dam in Yangtze River with Wavelet Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2791-2803, October.
    20. Vahid Nourani & Mehdi Komasi & Akira Mano, 2009. "A Multivariate ANN-Wavelet Approach for Rainfall–Runoff Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2877-2894, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:13:p:4747-4763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.