IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i3p801-814.html
   My bibliography  Save this article

River Discharges Forecasting In Northern Iraq Using Different ANN Techniques

Author

Listed:
  • Taymoor Awchi

Abstract

The Upper and Lower Zab Rivers are two of main and most important tributaries of Tigris River in Northern Iraq region. They supply Tigris River with more than 40 % of its yield. The forecasting of flows for these rivers is very important in operation of the existing Dokan Dam on the Lower Zab River and the proposed Bakhma Dam on the Upper Zab River for flood mitigation and also in drought periods. Three types of Artificial Neural Networks (ANNs) are investigated and evaluated for flow forecasting of both rivers. The ANN techniques are the feedforward neural networks (FFNN), generalized regression neural networks (GRNN), and the radial basis function neural networks (RBF). The networks’ performance varied with different cases involved in the study; however, the FFNN was almost better than other networks. The effect of including a time index within the inputs of the networks is investigated. In addition, the ANNs’ performance is investigated in forecasting the high and low peaks and in forecasting river flows using the data of the other river. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Taymoor Awchi, 2014. "River Discharges Forecasting In Northern Iraq Using Different ANN Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 801-814, February.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:3:p:801-814
    DOI: 10.1007/s11269-014-0516-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0516-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0516-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muhammad Sulaiman & Ahmed El-Shafie & Othman Karim & Hassan Basri, 2011. "Improved Water Level Forecasting Performance by Using Optimal Steepness Coefficients in an Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2525-2541, August.
    2. Ozgur Kisi & Alireza Nia & Mohsen Gosheh & Mohammad Tajabadi & Azadeh Ahmadi, 2012. "Intermittent Streamflow Forecasting by Using Several Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 457-474, January.
    3. Desalegn Edossa & Mukand Babel, 2011. "Application of ANN-Based Streamflow Forecasting Model for Agricultural Water Management in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1759-1773, April.
    4. Mahmut Firat & Mehmet Yurdusev & Mustafa Turan, 2009. "Evaluation of Artificial Neural Network Techniques for Municipal Water Consumption Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 617-632, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhangjun Liu & Shenglian Guo & Honggang Zhang & Dedi Liu & Guang Yang, 2016. "Comparative Study of Three Updating Procedures for Real-Time Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2111-2126, May.
    2. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    3. Jaydip Makwana & Mukesh Tiwari, 2014. "Intermittent Streamflow Forecasting and Extreme Event Modelling using Wavelet based Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4857-4873, October.
    4. Mustafa Turan & Mehmet Yurdusev, 2014. "Predicting Monthly River Flows by Genetic Fuzzy Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4685-4697, October.
    5. Ali Suliman & Milad Jajarmizadeh & Sobri Harun & Intan Mat Darus, 2015. "Comparison of Semi-Distributed, GIS-Based Hydrological Models for the Prediction of Streamflow in a Large Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3095-3110, July.
    6. Anas Mahmood Al-Juboori, 2021. "A Hybrid Model to Predict Monthly Streamflow Using Neighboring Rivers Annual Flows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 729-743, January.
    7. Zaher Mundher Yaseen & Minglei Fu & Chen Wang & Wan Hanna Melini Wan Mohtar & Ravinesh C. Deo & Ahmed El-shafie, 2018. "Application of the Hybrid Artificial Neural Network Coupled with Rolling Mechanism and Grey Model Algorithms for Streamflow Forecasting Over Multiple Time Horizons," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1883-1899, March.
    8. Erfan Mahmoodi & Mahmood Azari & Mohammad Taghi Dastorani & Aryan Salvati, 2024. "Comparison of Hydrological Modeling, Artificial Neural Networks and Multi-Criteria Decision Making Approaches for Determining Flood Source Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(13), pages 5343-5363, October.
    9. Ozgur Kisi, 2015. "Streamflow Forecasting and Estimation Using Least Square Support Vector Regression and Adaptive Neuro-Fuzzy Embedded Fuzzy c-means Clustering," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5109-5127, November.
    10. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2016. "Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 877-895, January.
    11. Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
    12. Yuan Yao & Zhenghua Gu & Yun Li & Hao Ding & Tinghui Wang, 2022. "Intelligent Simulation of Water Temperature Stratification in the Reservoir," IJERPH, MDPI, vol. 19(20), pages 1-13, October.
    13. Mohammad Babaei & Ramtin Moeini & Eghbal Ehsanzadeh, 2019. "Artificial Neural Network and Support Vector Machine Models for Inflow Prediction of Dam Reservoir (Case Study: Zayandehroud Dam Reservoir)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2203-2218, April.
    14. Rana Muhammad Adnan & Xiaohui Yuan & Ozgur Kisi & Muhammad Adnan & Asif Mehmood, 2018. "Stream Flow Forecasting of Poorly Gauged Mountainous Watershed by Least Square Support Vector Machine, Fuzzy Genetic Algorithm and M5 Model Tree Using Climatic Data from Nearby Station," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4469-4486, November.
    15. Ervin Shan Khai Tiu & Yuk Feng Huang & Jing Lin Ng & Nouar AlDahoul & Ali Najah Ahmed & Ahmed Elshafie, 2022. "An evaluation of various data pre-processing techniques with machine learning models for water level prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 121-153, January.
    16. Anas Mahmood Al-Juboori, 2019. "Generating Monthly Stream Flow Using Nearest River Data: Assessing Different Trees Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3257-3270, July.
    17. Chih-Chiang Wei & Nien-Sheng Hsu & Chien-Lin Huang, 2016. "Rainfall-Runoff Prediction Using Dynamic Typhoon Information and Surface Weather Characteristic Considering Monsoon Effects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 877-895, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paresh Shirsath & Anil Singh, 2010. "A Comparative Study of Daily Pan Evaporation Estimation Using ANN, Regression and Climate Based Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(8), pages 1571-1581, June.
    2. Young Hwan Choi & Donghwi Jung, 2020. "Development of Cross-Domain Artificial Neural Network to Predict High-Temporal Resolution Pressure Data," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
    3. Xianming Dou & Yongguo Yang & Jinhui Luo, 2018. "Estimating Forest Carbon Fluxes Using Machine Learning Techniques Based on Eddy Covariance Measurements," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
    4. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    5. Mustafa Turan & Mehmet Yurdusev, 2014. "Predicting Monthly River Flows by Genetic Fuzzy Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4685-4697, October.
    6. Wang Zhang & Pan Liu & Xizhen Chen & Li Wang & Xueshan Ai & Maoyuan Feng & Dedi Liu & Yuanyuan Liu, 2016. "Optimal Operation of Multi-reservoir Systems Considering Time-lags of Flood Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 523-540, January.
    7. Hadi Sanikhani & Ozgur Kisi, 2012. "River Flow Estimation and Forecasting by Using Two Different Adaptive Neuro-Fuzzy Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1715-1729, April.
    8. Zheng Zeng & Wei-Ge Luo & Fa-Cheng Yi & Feng-Yu Huang & Cheng-Xia Wang & Yi-Ping Zhang & Qiang-Qiang Cheng & Zhe Wang, 2021. "Horizontal Distribution of Cadmium in Urban Constructed Wetlands: A Case Study," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    9. Babak Mohammadi & Farshad Ahmadi & Saeid Mehdizadeh & Yiqing Guan & Quoc Bao Pham & Nguyen Thi Thuy Linh & Doan Quang Tri, 2020. "Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3387-3409, August.
    10. Ahmed El-Shafie & Ali Najah & Humod Alsulami & Heerbod Jahanbani, 2014. "Optimized Neural Network Prediction Model for Potential Evapotranspiration Utilizing Ensemble Procedure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 947-967, March.
    11. L. Karthikeyan & D. Kumar & Didier Graillot & Shishir Gaur, 2013. "Prediction of Ground Water Levels in the Uplands of a Tropical Coastal Riparian Wetland using Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 871-883, February.
    12. Salah L. Zubaidi & Sadik K. Gharghan & Jayne Dooley & Rafid M. Alkhaddar & Mawada Abdellatif, 2018. "Short-Term Urban Water Demand Prediction Considering Weather Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4527-4542, November.
    13. Gokmen Tayfur & Ata Nadiri & Asghar Moghaddam, 2014. "Supervised Intelligent Committee Machine Method for Hydraulic Conductivity Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1173-1184, March.
    14. Pao-Shan Yu & Tao-Chang Yang & Chen-Min Kuo & Yi-Tai Wang, 2014. "A Stochastic Approach for Seasonal Water-Shortage Probability Forecasting Based on Seasonal Weather Outlook," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 3905-3920, September.
    15. Pornpit Wongthongtham & Bilal Abu-Salih & Jeff Huang & Hemixa Patel & Komsun Siripun, 2023. "A Multi-Criteria Analysis Approach to Identify Flood Risk Asset Damage Hotspots in Western Australia," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    16. Mohammad R. Hassanvand & Hojat Karami & Sayed-Farhad Mousavi, 2018. "Investigation of neural network and fuzzy inference neural network and their optimization using meta-algorithms in river flood routing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1057-1080, December.
    17. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    18. Tao Guo & Wei He & Zhonglian Jiang & Xiumin Chu & Reza Malekian & Zhixiong Li, 2018. "An Improved LSSVM Model for Intelligent Prediction of the Daily Water Level," Energies, MDPI, vol. 12(1), pages 1-11, December.
    19. Xiao-Chen Yuan & Yi-Ming Wei & Su-Yan Pan & Ju-Liang Jin, 2014. "Urban Household Water Demand in Beijing by 2020: An Agent-Based Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2967-2980, August.
    20. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:3:p:801-814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.