A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida
Author
Abstract
Suggested Citation
DOI: 10.1007/s11269-015-1167-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Afiq Hipni & Ahmed El-shafie & Ali Najah & Othman Karim & Aini Hussain & Muhammad Mukhlisin, 2013. "Daily Forecasting of Dam Water Levels: Comparing a Support Vector Machine (SVM) Model With Adaptive Neuro Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3803-3823, August.
- Xiaohu Wen & Jianhua Si & Zhibin He & Jun Wu & Hongbo Shao & Haijiao Yu, 2015. "Support-Vector-Machine-Based Models for Modeling Daily Reference Evapotranspiration With Limited Climatic Data in Extreme Arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3195-3209, July.
- Veysel Güldal & Hakan Tongal, 2010. "Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 105-128, January.
- Afiq Hipni & Ahmed El-shafie & Ali Najah & Othman Karim & Aini Hussain & Muhammad Mukhlisin, 2013. "Erratum to: Daily Forecasting of Dam Water Levels: Comparing a Support Vector Machine (SVM) Model With Adaptive Neuro Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4113-4113, September.
- Bagher Shirmohammadi & Mehdi Vafakhah & Vahid Moosavi & Alireza Moghaddamnia, 2013. "Application of Several Data-Driven Techniques for Predicting Groundwater Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 419-432, January.
- Jehangir Awan & Deg-Hyo Bae, 2014. "Improving ANFIS Based Model for Long-term Dam Inflow Prediction by Incorporating Monthly Rainfall Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1185-1199, March.
- Samad Emamgholizadeh & Khadije Moslemi & Gholamhosein Karami, 2014. "Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5433-5446, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kusum Pandey & Shiv Kumar & Anurag Malik & Alban Kuriqi, 2020. "Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
- Hsi-Ting Fang & Bing-Chen Jhong & Yih-Chi Tan & Kai-Yuan Ke & Mo-Hsiung Chuang, 2019. "A Two-Stage Approach Integrating SOM- and MOGA-SVM-Based Algorithms to Forecast Spatial-temporal Groundwater Level with Meteorological Factors," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 797-818, January.
- Sandra M. Guzman & Joel O. Paz & Mary Love M. Tagert, 2017. "The Use of NARX Neural Networks to Forecast Daily Groundwater Levels," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1591-1603, March.
- Sangita Dey & Arabin Kumar Dey & Rajesh Kumar Mall, 2021. "Modeling Long-term Groundwater Levels By Exploring Deep Bidirectional Long Short-Term Memory using Hydro-climatic Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3395-3410, August.
- Kostić, Srđan & Stojković, Milan & Guranov, Iva & Vasović, Nebojša, 2019. "Revealing the background of groundwater level dynamics: Contributing factors, complex modeling and engineering applications," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 408-421.
- Ao, Chang & Zeng, Wenzhi & Wu, Lifeng & Qian, Long & Srivastava, Amit Kumar & Gaiser, Thomas, 2021. "Time-delayed machine learning models for estimating groundwater depth in the Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 255(C).
- Indrajit Mandal & Swades Pal, 2022. "Assessing the impact of ecological insecurity on ecosystem service value in stone quarrying and crushing dominated areas," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 11760-11784, October.
- Bahrudin Hrnjica & Ognjen Bonacci, 2019. "Lake Level Prediction using Feed Forward and Recurrent Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2471-2484, May.
- Wen-Ping Tsai & Yen-Ming Chiang & Jun-Lin Huang & Fi-John Chang, 2016. "Exploring the Mechanism of Surface and Ground Water through Data-Driven Techniques with Sensitivity Analysis for Water Resources Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4789-4806, October.
- Dilip Kumar Roy & Bithin Datta, 2017. "Fuzzy C-Mean Clustering Based Inference System for Saltwater Intrusion Processes Prediction in Coastal Aquifers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 355-376, January.
- Saeideh Samani & Meysam Vadiati & Farahnaz Azizi & Efat Zamani & Ozgur Kisi, 2022. "Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorological Components," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3627-3647, August.
- Zhang, Zixiong & Gong, Yicheng & Wang, Zhongjing, 2018. "Accessible remote sensing data based reference evapotranspiration estimation modelling," Agricultural Water Management, Elsevier, vol. 210(C), pages 59-69.
- Dilip Kumar Roy & Sujit Kumar Biswas & Kowshik Kumar Saha & Khandakar Faisal Ibn Murad, 2021. "Groundwater Level Forecast Via a Discrete Space-State Modelling Approach as a Surrogate to Complex Groundwater Simulation Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1653-1672, April.
- Habibeh Sharifi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2021. "Evaluating the Performance of Agricultural Water Distribution Systems Using FIS, ANN and ANFIS Intelligent Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1797-1816, April.
- Shahab Araghinejad & Nima Fayaz & Seyed-Mohammad Hosseini-Moghari, 2018. "Development of a Hybrid Data Driven Model for Hydrological Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(11), pages 3737-3750, September.
- Hye-Suk Yi & Sangyoung Park & Kwang-Guk An & Keun-Chang Kwak, 2018. "Algal Bloom Prediction Using Extreme Learning Machine Models at Artificial Weirs in the Nakdong River, Korea," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
- Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yicheng Gong & Yongxiang Zhang & Shuangshuang Lan & Huan Wang, 2016. "A Comparative Study of Artificial Neural Networks, Support Vector Machines and Adaptive Neuro Fuzzy Inference System for Forecasting Groundwater Levels near Lake Okeechobee, Florida," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 375-391, January.
- Zhang, Zixiong & Gong, Yicheng & Wang, Zhongjing, 2018. "Accessible remote sensing data based reference evapotranspiration estimation modelling," Agricultural Water Management, Elsevier, vol. 210(C), pages 59-69.
- Xianming Dou & Yongguo Yang & Jinhui Luo, 2018. "Estimating Forest Carbon Fluxes Using Machine Learning Techniques Based on Eddy Covariance Measurements," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
- Ali Nouh Mabdeh & A’kif Al-Fugara & Khaled Mohamed Khedher & Muhammed Mabdeh & Abdel Rahman Al-Shabeeb & Rida Al-Adamat, 2022. "Forest Fire Susceptibility Assessment and Mapping Using Support Vector Regression and Adaptive Neuro-Fuzzy Inference System-Based Evolutionary Algorithms," Sustainability, MDPI, vol. 14(15), pages 1-26, August.
- Mirzaei, Mohsen & Jafari, Ali & Gholamalifard, Mehdi & Azadi, Hossein & Shooshtari, Sharif Joorabian & Moghaddam, Saghi Movahhed & Gebrehiwot, Kindeya & Witlox, Frank, 2020. "Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover," Land Use Policy, Elsevier, vol. 95(C).
- Ahmet Cemkut Badem & Recep Yılmaz & Muhammet Raşit Cesur & Elif Cesur, 2024. "Advanced Predictive Modeling for Dam Occupancy Using Historical and Meteorological Data," Sustainability, MDPI, vol. 16(17), pages 1-18, September.
- Manish Kumar & Anuradha Kumari & Daniel Prakash Kushwaha & Pravendra Kumar & Anurag Malik & Rawshan Ali & Alban Kuriqi, 2020. "Estimation of Daily Stage–Discharge Relationship by Using Data-Driven Techniques of a Perennial River, India," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
- Michelle Sapitang & Wanie M. Ridwan & Khairul Faizal Kushiar & Ali Najah Ahmed & Ahmed El-Shafie, 2020. "Machine Learning Application in Reservoir Water Level Forecasting for Sustainable Hydropower Generation Strategy," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
- Dilip Kumar Roy & Sujit Kumar Biswas & Kowshik Kumar Saha & Khandakar Faisal Ibn Murad, 2021. "Groundwater Level Forecast Via a Discrete Space-State Modelling Approach as a Surrogate to Complex Groundwater Simulation Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1653-1672, April.
- Onur Genç & Ali Dağ, 2016. "A machine learning-based approach to predict the velocity profiles in small streams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 43-61, January.
- Jhih-Huang Wang & Gwo-Fong Lin & Ming-Jui Chang & I-Hang Huang & Yu-Ren Chen, 2019. "Real-Time Water-Level Forecasting Using Dilated Causal Convolutional Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3759-3780, September.
- Meral Buyukyildiz & Gulay Tezel & Volkan Yilmaz, 2014. "Estimation of the Change in Lake Water Level by Artificial Intelligence Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4747-4763, October.
- Shuheng Wang & Guohao Li & Yifan Bao, 2018. "A novel improved fuzzy support vector machine based stock price trend forecast model," Papers 1801.00681, arXiv.org.
- Sina Paryani & Mojgan Bordbar & Changhyun Jun & Mahdi Panahi & Sayed M. Bateni & Christopher M. U. Neale & Hamidreza Moeini & Saro Lee, 2023. "Hybrid-based approaches for the flood susceptibility prediction of Kermanshah province, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 837-868, March.
- Sri Lakshmi Sesha Vani Jayanthi & Venkata Reddy Keesara & Venkataramana Sridhar, 2022. "Prediction of Future Lake Water Availability Using SWAT and Support Vector Regression (SVR)," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
- Vivien Lai & Ali Najah Ahmed & M.A. Malek & Haitham Abdulmohsin Afan & Rusul Khaleel Ibrahim & Ahmed El-Shafie & Amr El-Shafie, 2019. "Modeling the Nonlinearity of Sea Level Oscillations in the Malaysian Coastal Areas Using Machine Learning Algorithms," Sustainability, MDPI, vol. 11(17), pages 1-26, August.
- Samad Emamgholizadeh & Khadije Moslemi & Gholamhosein Karami, 2014. "Prediction the Groundwater Level of Bastam Plain (Iran) by Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5433-5446, December.
- Ahmed El-Shafie & Amr El-Shafie & Muhammad Mukhlisin, 2014. "New Approach: Integrated Risk-Stochastic Dynamic Model for Dam and Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2093-2107, June.
- Ozgur Kisi, 2015. "Streamflow Forecasting and Estimation Using Least Square Support Vector Regression and Adaptive Neuro-Fuzzy Embedded Fuzzy c-means Clustering," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5109-5127, November.
- Zhenzhu Meng & Yiren Wang & Sen Zheng & Xiao Wang & Dan Liu & Jinxin Zhang & Yiting Shao, 2024. "Abnormal Monitoring Data Detection Based on Matrix Manipulation and the Cuckoo Search Algorithm," Mathematics, MDPI, vol. 12(9), pages 1-18, April.
More about this item
Keywords
Groundwater level; Artificial neural network; Support vector machine; Adaptive neuro fuzzy inference system;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:30:y:2016:i:1:p:375-391. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.