IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v33y2019i11d10.1007_s11269-019-02346-0.html
   My bibliography  Save this article

Lake Water-Level fluctuations forecasting using Minimax Probability Machine Regression, Relevance Vector Machine, Gaussian Process Regression, and Extreme Learning Machine

Author

Listed:
  • Hossein Bonakdari

    (Razi University)

  • Isa Ebtehaj

    (Razi University)

  • Pijush Samui

    (NIT Patna)

  • Bahram Gharabaghi

    (University of Guelph)

Abstract

Forecasting freshwater lake levels is vital information for water resource management, including water supply management, shoreline management, hydropower generation optimization, and flood management. This study presents a novel application of four advanced artificial intelligence models namely the Minimax Probability Machine Regression (MPMR), Relevance Vector Machine (RVM), Gaussian Process Regression (GPR) and Extreme Learning Machine (ELM) for forecasting lake level fluctuation in Lake Huron utilizing historical datasets. The MPMR is a probabilistic framework that employed Mercer Kernels to achieve nonlinear regression models. The GPR, which is a probabilistic technique used tractable Bayesian framework for generalization of multivariate distribution of input samples to vast dimensional space. The ELM is a capable algorithm-based model for the implementation of the single-layer feed-forward neural network. The RVM demonstrate depends on the specification of the Bayesian method on a linear model with proper preceding that results in demonstration of sparse. The recommended techniques were tested to evaluate the current lake water-level trend monthly from the historical datasets at four previous time steps. The Lake Huron levels from 1918 to 1993 was managed for the training phase, and the rest of data (from 1994 to 2013) was used for testing. Considering the monthly and annually previous time steps, six models were introduced and found that the best results are achieved for a model with (t-1, t-2, t-3, t-12) as input combinations. The results show that all models can forecast the lake levels precisely. The results of this research study exhibit that the MPMR model (R2 = 0.984; MAE = 0.035; RMSE = 0.044; ENS = 0.984; DRefined = 0.995; ELM = 0.874) found to be more precise in lake level forecasting. The MPMR can be utilized as a practical computational tool on current and future planning with sustainable management of water resource of Lake Michigan-Huron.

Suggested Citation

  • Hossein Bonakdari & Isa Ebtehaj & Pijush Samui & Bahram Gharabaghi, 2019. "Lake Water-Level fluctuations forecasting using Minimax Probability Machine Regression, Relevance Vector Machine, Gaussian Process Regression, and Extreme Learning Machine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3965-3984, September.
  • Handle: RePEc:spr:waterr:v:33:y:2019:i:11:d:10.1007_s11269-019-02346-0
    DOI: 10.1007/s11269-019-02346-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-019-02346-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-019-02346-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veysel Güldal & Hakan Tongal, 2010. "Comparison of Recurrent Neural Network, Adaptive Neuro-Fuzzy Inference System and Stochastic Models in Eğirdir Lake Level Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 105-128, January.
    2. Hossein Kakahaji & Hamed Banadaki & Abbas Kakahaji & Abdulamir Kakahaji, 2013. "Prediction of Urmia Lake Water-Level Fluctuations by Using Analytical, Linear Statistic and Intelligent Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4469-4492, October.
    3. Babak Vaheddoost & Hafzullah Aksoy & Hirad Abghari, 2016. "Prediction of Water Level using Monthly Lagged Data in Lake Urmia, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4951-4967, October.
    4. Kisi, Ozgur & Shiri, Jalal & Karimi, Sepideh & Shamshirband, Shahaboddin & Motamedi, Shervin & Petković, Dalibor & Hashim, Roslan, 2015. "A survey of water level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 731-743.
    5. Jalal Shiri & Shahaboddin Shamshirband & Ozgur Kisi & Sepideh Karimi & Seyyed M Bateni & Seyed Hossein Hosseini Nezhad & Arsalan Hashemi, 2016. "Prediction of Water-Level in the Urmia Lake Using the Extreme Learning Machine Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5217-5229, November.
    6. Maryam Shafaei & Ozgur Kisi, 2016. "Lake Level Forecasting Using Wavelet-SVR, Wavelet-ANFIS and Wavelet-ARMA Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 79-97, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillaume Grégoire & Josée Fortin & Isa Ebtehaj & Hossein Bonakdari, 2023. "Forecasting Pesticide Use on Golf Courses by Integration of Deep Learning and Decision Tree Techniques," Agriculture, MDPI, vol. 13(6), pages 1-22, May.
    2. Isa Ebtehaj & Keyvan Soltani & Afshin Amiri & Marzban Faramarzi & Chandra A. Madramootoo & Hossein Bonakdari, 2021. "Prognostication of Shortwave Radiation Using an Improved No-Tuned Fast Machine Learning," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    3. Hossien Riahi-Madvar & Majid Dehghani & Rasoul Memarzadeh & Bahram Gharabaghi, 2021. "Short to Long-Term Forecasting of River Flows by Heuristic Optimization Algorithms Hybridized with ANFIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(4), pages 1149-1166, March.
    4. Xiangwei Wang & Yizhe Yang & Jianglong Lv & Hailong He, 2023. "Past, present and future of the applications of machine learning in soil science and hydrology," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 18(2), pages 67-80.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir Hossein Zaji & Hossein Bonakdari & Bahram Gharabaghi, 2019. "Advancing Freshwater Lake Level Forecast Using King’s Castle Optimization with Training Sample Adaption and Adaptive Neuro-Fuzzy Inference System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4215-4230, September.
    2. Meral Buyukyildiz & Gulay Tezel & Volkan Yilmaz, 2014. "Estimation of the Change in Lake Water Level by Artificial Intelligence Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4747-4763, October.
    3. Yawei Qin & Yongjin Lei & Xiangyu Gong & Wanglai Ju, 2022. "A model involving meteorological factors for short- to medium-term, water-level predictions of small- and medium-sized urban rivers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 725-739, March.
    4. Babak Vaheddoost & Hafzullah Aksoy & Hirad Abghari, 2016. "Prediction of Water Level using Monthly Lagged Data in Lake Urmia, Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4951-4967, October.
    5. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    6. Lahmiri, Salim, 2018. "Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 444-451.
    7. Hadi Sanikhani & Ozgur Kisi, 2012. "River Flow Estimation and Forecasting by Using Two Different Adaptive Neuro-Fuzzy Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1715-1729, April.
    8. Balati Maihemuti & Tayierjiang Aishan & Zibibula Simayi & Yilinuer Alifujiang & Shengtian Yang, 2020. "Temporal Scaling of Water Level Fluctuations in Shallow Lakes and Its Impacts on the Lake Eco-Environments," Sustainability, MDPI, vol. 12(9), pages 1-14, April.
    9. Siriporn Supratid & Thannob Aribarg & Seree Supharatid, 2017. "An Integration of Stationary Wavelet Transform and Nonlinear Autoregressive Neural Network with Exogenous Input for Baseline and Future Forecasting of Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4023-4043, September.
    10. Andres Ticlavilca & Mac McKee, 2011. "Multivariate Bayesian Regression Approach to Forecast Releases from a System of Multiple Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 523-543, January.
    11. Shaghaghi, Saba & Bonakdari, Hossein & Gholami, Azadeh & Ebtehaj, Isa & Zeinolabedini, Maryam, 2017. "Comparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel design," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 271-286.
    12. Xike Zhang & Qiuwen Zhang & Gui Zhang & Zhiping Nie & Zifan Gui & Huafei Que, 2018. "A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition," IJERPH, MDPI, vol. 15(5), pages 1-23, May.
    13. Marijana Hadzima-Nyarko & Anamarija Rabi & Marija Šperac, 2014. "Implementation of Artificial Neural Networks in Modeling the Water-Air Temperature Relationship of the River Drava," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1379-1394, March.
    14. Pratik Pathak & Ajay Kalra & Sajjad Ahmad & Miguel Bernardez, 2016. "Wavelet-Aided Analysis to Estimate Seasonal Variability and Dominant Periodicities in Temperature, Precipitation, and Streamflow in the Midwestern United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4649-4665, October.
    15. Siddik Shakul Hameed & Ramesh Ramadoss & Kannadasan Raju & GM Shafiullah, 2022. "A Framework-Based Wind Forecasting to Assess Wind Potential with Improved Grey Wolf Optimization and Support Vector Regression," Sustainability, MDPI, vol. 14(7), pages 1-29, April.
    16. Xuesong Zhang & Kaiguang Zhao, 2012. "Bayesian Neural Networks for Uncertainty Analysis of Hydrologic Modeling: A Comparison of Two Schemes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2365-2382, June.
    17. Jalal Shiri & Shahaboddin Shamshirband & Ozgur Kisi & Sepideh Karimi & Seyyed M Bateni & Seyed Hossein Hosseini Nezhad & Arsalan Hashemi, 2016. "Prediction of Water-Level in the Urmia Lake Using the Extreme Learning Machine Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5217-5229, November.
    18. Jinping Zhang & Honglin Xiao & Hongyuan Fang, 2022. "Component-based Reconstruction Prediction of Runoff at Multi-time Scales in the Source Area of the Yellow River Based on the ARMA Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 433-448, January.
    19. Salvatore Campisi-Pinto & Jan Adamowski & Gideon Oron, 2012. "Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3539-3558, September.
    20. Sri Lakshmi Sesha Vani Jayanthi & Venkata Reddy Keesara & Venkataramana Sridhar, 2022. "Prediction of Future Lake Water Availability Using SWAT and Support Vector Regression (SVR)," Sustainability, MDPI, vol. 14(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:33:y:2019:i:11:d:10.1007_s11269-019-02346-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.