IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v23y2009i13p2791-2803.html
   My bibliography  Save this article

Prediction of Inflow at Three Gorges Dam in Yangtze River with Wavelet Network Model

Author

Listed:
  • Wensheng Wang
  • Juliang Jin
  • Yueqing Li

Abstract

A wavelet network model is developed to predict the inflow of Three Gorges dam in Yangtze River, China. The model makes use of the multi-resolution analysis of wavelet analysis and the nonlinear capability of artificial neural network. The short and long term input runoff of Three Gorges dam, such as annual mean discharge, seasonal mean discharge of 10 days period, daily mean discharge and annual maximum flood peak discharge, have been predicted with the wavelet network model (WNM). At the same time a kind of threshold auto-regressive model (TAR) has also applied for those predictions. The comparison of WNM with TAR has been executed. The results show that the accuracy of model predictions with WNM is generally better than that with TAR. The suggested wavelet network model is functional and feasible for runoff prediction. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Wensheng Wang & Juliang Jin & Yueqing Li, 2009. "Prediction of Inflow at Three Gorges Dam in Yangtze River with Wavelet Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2791-2803, October.
  • Handle: RePEc:spr:waterr:v:23:y:2009:i:13:p:2791-2803
    DOI: 10.1007/s11269-009-9409-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-009-9409-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-009-9409-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehmetcik Bayazit & Hafzullah Aksoy, 2001. "Using wavelets for data generation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(2), pages 157-166.
    2. Ahmed El-Shafie & Mahmoud Taha & Aboelmagd Noureldin, 2007. "A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 533-556, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Falamarzi, Yashar & Palizdan, Narges & Huang, Yuk Feng & Lee, Teang Shui, 2014. "Estimating evapotranspiration from temperature and wind speed data using artificial and wavelet neural networks (WNNs)," Agricultural Water Management, Elsevier, vol. 140(C), pages 26-36.
    2. Wensheng Wang & Shixiong Hu & Yueqing Li, 2011. "Wavelet Transform Method for Synthetic Generation of Daily Streamflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(1), pages 41-57, January.
    3. Muhammad Shoaib & Asaad Y. Shamseldin & Sher Khan & Mudasser Muneer Khan & Zahid Mahmood Khan & Tahir Sultan & Bruce W. Melville, 2018. "A Comparative Study of Various Hybrid Wavelet Feedforward Neural Network Models for Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 83-103, January.
    4. Ozgur Kisi & Jalal Shiri, 2011. "Precipitation Forecasting Using Wavelet-Genetic Programming and Wavelet-Neuro-Fuzzy Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3135-3152, October.
    5. Rajeev Sahay & Ayush Srivastava, 2014. "Predicting Monsoon Floods in Rivers Embedding Wavelet Transform, Genetic Algorithm and Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 301-317, January.
    6. J. Drisya & D. Sathish Kumar & Thendiyath Roshni, 2021. "Hydrological drought assessment through streamflow forecasting using wavelet enabled artificial neural networks," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3653-3672, March.
    7. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    8. Ozgur Kisi, 2011. "Wavelet Regression Model as an Alternative to Neural Networks for River Stage Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 579-600, January.
    9. Seyed Akrami & Vahid Nourani & S. Hakim, 2014. "Development of Nonlinear Model Based on Wavelet-ANFIS for Rainfall Forecasting at Klang Gates Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2999-3018, August.
    10. Salvatore Campisi-Pinto & Jan Adamowski & Gideon Oron, 2012. "Forecasting Urban Water Demand Via Wavelet-Denoising and Neural Network Models. Case Study: City of Syracuse, Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3539-3558, September.
    11. Huaizhi Su & Xiaoqun Yan & Hongping Liu & Zhiping Wen, 2017. "Integrated Multi-Level Control Value and Variation Trend Early-Warning Approach for Deformation Safety of Arch Dam," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(6), pages 2025-2045, April.
    12. R. Venkata Ramana & B. Krishna & S. Kumar & N. Pandey, 2013. "Monthly Rainfall Prediction Using Wavelet Neural Network Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3697-3711, August.
    13. Padam Jee Omar & Shishir Gaur & S. B. Dwivedi & P. K. S. Dikshit, 2020. "A Modular Three-Dimensional Scenario-Based Numerical Modelling of Groundwater Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1913-1932, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafzullah Aksoy, 2001. "Storage Capacity for River Reservoirs by Wavelet-Based Generation of Sequent-Peak Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 15(6), pages 423-437, December.
    2. Dalibor Petković & Milan Gocic & Slavisa Trajkovic & Miloš Milovančević & Dragoljub Šević, 2017. "Precipitation concentration index management by adaptive neuro-fuzzy methodology," Climatic Change, Springer, vol. 141(4), pages 655-669, April.
    3. Qiang Zhang & Ben-De Wang & Bin He & Yong Peng & Ming-Lei Ren, 2011. "Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2683-2703, September.
    4. Jehangir Awan & Deg-Hyo Bae, 2014. "Improving ANFIS Based Model for Long-term Dam Inflow Prediction by Incorporating Monthly Rainfall Forecasts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1185-1199, March.
    5. Deepti Rani & Maria Moreira, 2010. "Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(6), pages 1107-1138, April.
    6. Yahia Mutalib Tofiq & Sarmad Dashti Latif & Ali Najah Ahmed & Pavitra Kumar & Ahmed El-Shafie, 2022. "Optimized Model Inputs Selections for Enhancing River Streamflow Forecasting Accuracy Using Different Artificial Intelligence Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5999-6016, December.
    7. Ahmad Khazaee Poul & Mojtaba Shourian & Hadi Ebrahimi, 2019. "A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(8), pages 2907-2923, June.
    8. Muhammad Sulaiman & Ahmed El-Shafie & Othman Karim & Hassan Basri, 2011. "Improved Water Level Forecasting Performance by Using Optimal Steepness Coefficients in an Artificial Neural Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2525-2541, August.
    9. Hadi Sanikhani & Ozgur Kisi & Mohammad Nikpour & Yagob Dinpashoh, 2012. "Estimation of Daily Pan Evaporation Using Two Different Adaptive Neuro-Fuzzy Computing Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4347-4365, December.
    10. Reza Mohammadpour & Aminuddin Ghani & Mohammadtaghi Vakili & Tooraj Sabzevari, 2016. "Prediction of temporal scour hazard at bridge abutment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1891-1911, February.
    11. Symeon Christodoulou & Alexandra Deligianni, 2010. "A Neurofuzzy Decision Framework for the Management of Water Distribution Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 139-156, January.
    12. Aksoy, Hafzullah & Fuat Toprak, Z & Aytek, Ali & Erdem Ünal, N, 2004. "Stochastic generation of hourly mean wind speed data," Renewable Energy, Elsevier, vol. 29(14), pages 2111-2131.
    13. Sabah Saadi Fayaed & Seef Saadi Fiyadh & Wong Jee Khai & Ali Najah Ahmed & Haitham Abdulmohsin Afan & Rusul Khaleel Ibrahim & Chow Ming Fai & Suhana Koting & Nuruol Syuhadaa Mohd & Wan Zurina Binti Ja, 2019. "Improving Dam and Reservoir Operation Rules Using Stochastic Dynamic Programming and Artificial Neural Network Integration Model," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    14. Maryam Shafaei & Ozgur Kisi, 2016. "Lake Level Forecasting Using Wavelet-SVR, Wavelet-ANFIS and Wavelet-ARMA Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 79-97, January.
    15. Vahid Nourani & Mehdi Komasi & Akira Mano, 2009. "A Multivariate ANN-Wavelet Approach for Rainfall–Runoff Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2877-2894, November.
    16. Hadi Sanikhani & Ozgur Kisi, 2012. "River Flow Estimation and Forecasting by Using Two Different Adaptive Neuro-Fuzzy Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1715-1729, April.
    17. Alexandre Evsukoff & Beatriz Lima & Nelson Ebecken, 2011. "Long-Term Runoff Modeling Using Rainfall Forecasts with Application to the Iguaçu River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 963-985, February.
    18. Ahmed El-Shafie & Ali Najah & Humod Alsulami & Heerbod Jahanbani, 2014. "Optimized Neural Network Prediction Model for Potential Evapotranspiration Utilizing Ensemble Procedure," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 947-967, March.
    19. Georgia Papacharalampous & Hristos Tyralis & Demetris Koutsoyiannis, 2018. "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5207-5239, December.
    20. Andres Ticlavilca & Mac McKee, 2011. "Multivariate Bayesian Regression Approach to Forecast Releases from a System of Multiple Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 523-543, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:23:y:2009:i:13:p:2791-2803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.