IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p16008-d1281522.html
   My bibliography  Save this article

Prediction of Water Level in Lakes by RNN-Based Deep Learning Algorithms to Preserve Sustainability in Changing Climate and Relationship to Microcystin

Author

Listed:
  • Serkan Ozdemir

    (Department of Information Systems, Middle East Technical University, 06800 Ankara, Turkey)

  • Sevgi Ozkan Yildirim

    (Department of Information Systems, Middle East Technical University, 06800 Ankara, Turkey)

Abstract

In recent years, intensive water use combined with global climate change has increased fluctuations in freshwater lake levels, hydrological characteristics, water quality, and water ecosystem balance. To provide a sustainable management plan in the long term, deep learning models (DL) can provide fast and reliable predictions of lake water levels (LWLs) in challenging future scenarios. In this study, artificial neural networks (ANNs) and four recurrent neural network (RNN) algorithms were investigated to predict LWLs that were applied in time series such as one day, five days, ten days, twenty days, one month, two months, and four months ahead. The results show that the performance of the Long Short-Term Memory (LSTM) model with a prediction of 60 days is in the very good range and outperforms the benchmark, the Naïve Method, by 78% and the ANN at the significance level ( p < 0.05) with an RMSE = 0.1762 compared to other DL algorithms. The RNN-based DL algorithms show better prediction performance, specifically, for long time horizons, 57.98% for 45 days, 78.55% for 60 days, and 58% for 120 days, and it is better to use a prediction period of at least 20 days with an 18.45% performance increase to take advantage of the gated RNN algorithms for predicting future water levels. Additionally, microcystin concentration was tightly correlated with temperature and was most elevated between 15 and 20 m water depths during the summer months. Evidence on LWL forecasting and microcystin concentrations in the context of climate change could help develop a sustainable water management plan and long-term policy for drinking water lakes.

Suggested Citation

  • Serkan Ozdemir & Sevgi Ozkan Yildirim, 2023. "Prediction of Water Level in Lakes by RNN-Based Deep Learning Algorithms to Preserve Sustainability in Changing Climate and Relationship to Microcystin," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:16008-:d:1281522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/16008/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/16008/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meral Buyukyildiz & Gulay Tezel & Volkan Yilmaz, 2014. "Estimation of the Change in Lake Water Level by Artificial Intelligence Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4747-4763, October.
    2. Fang, Tingting & Lahdelma, Risto, 2016. "Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system," Applied Energy, Elsevier, vol. 179(C), pages 544-552.
    3. Dilayda Soylu Pekpostalci & Rifat Tur & Ali Danandeh Mehr & Mohammad Amin Vazifekhah Ghaffari & Dominika Dąbrowska & Vahid Nourani, 2023. "Drought Monitoring and Forecasting across Turkey: A Contemporary Review," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    4. Abdüsselam Altunkaynak, 2007. "Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 399-408, February.
    5. Abdus Samad Azad & Rajalingam Sokkalingam & Hanita Daud & Sajal Kumar Adhikary & Hifsa Khurshid & Siti Nur Athirah Mazlan & Muhammad Babar Ali Rabbani, 2022. "Water Level Prediction through Hybrid SARIMA and ANN Models Based on Time Series Analysis: Red Hills Reservoir Case Study," Sustainability, MDPI, vol. 14(3), pages 1-20, February.
    6. Bahrudin Hrnjica & Ognjen Bonacci, 2019. "Lake Level Prediction using Feed Forward and Recurrent Neural Networks," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2471-2484, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Željka Brkić & Mladen Kuhta, 2022. "Lake Level Evolution of the Largest Freshwater Lake on the Mediterranean Islands through Drought Analysis and Machine Learning," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    2. Abdus Samad Azad & Rajalingam Sokkalingam & Hanita Daud & Sajal Kumar Adhikary & Hifsa Khurshid & Siti Nur Athirah Mazlan & Muhammad Babar Ali Rabbani, 2022. "Water Level Prediction through Hybrid SARIMA and ANN Models Based on Time Series Analysis: Red Hills Reservoir Case Study," Sustainability, MDPI, vol. 14(3), pages 1-20, February.
    3. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    4. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    5. Kagiso Samuel More & Christian Wolkersdorfer, 2022. "Predicting and Forecasting Mine Water Parameters Using a Hybrid Intelligent System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2813-2826, June.
    6. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    7. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    8. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).
    10. Zhao, Yin & Gong, Mingju & Sun, Jiawang & Han, Cuitian & Jing, Lei & Li, Bo & Zhao, Zhixuan, 2023. "A new hybrid optimization prediction strategy based on SH-Informer for district heating system," Energy, Elsevier, vol. 282(C).
    11. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    12. Lumbreras, Mikel & Garay-Martinez, Roberto & Arregi, Beñat & Martin-Escudero, Koldobika & Diarce, Gonzalo & Raud, Margus & Hagu, Indrek, 2022. "Data driven model for heat load prediction in buildings connected to District Heating by using smart heat meters," Energy, Elsevier, vol. 239(PD).
    13. Huang, Ke & Yuan, Jianjuan & Zhou, Zhihua & Zheng, Xuejing, 2022. "Analysis and evaluation of heat source data of large-scale heating system based on descriptive data mining techniques," Energy, Elsevier, vol. 251(C).
    14. Ervin Shan Khai Tiu & Yuk Feng Huang & Jing Lin Ng & Nouar AlDahoul & Ali Najah Ahmed & Ahmed Elshafie, 2022. "An evaluation of various data pre-processing techniques with machine learning models for water level prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 121-153, January.
    15. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    16. Eltoukhy, Abdelrahman E.E. & Wang, Z.X. & Chan, Felix T.S. & Fu, X., 2019. "Data analytics in managing aircraft routing and maintenance staffing with price competition by a Stackelberg-Nash game model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 143-168.
    17. Yuan, Jianjuan & Huang, Ke & Han, Zhao & Zhou, Zhihua & Lu, Shilei, 2021. "A new feedback predictive model for improving the operation efficiency of heating station based on indoor temperature," Energy, Elsevier, vol. 222(C).
    18. Anwar Hussain & Masoud Reihanifar & Rizwan Niaz & Olayan Albalawi & Mohsen Maghrebi & Abdelkader T. Ahmed & Ali Danandeh Mehr, 2024. "Characterizing Inter-Seasonal Meteorological Drought Using Random Effect Logistic Regression," Sustainability, MDPI, vol. 16(19), pages 1-20, September.
    19. Vanessa Zawodnik & Florian Christian Schwaiger & Christoph Sorger & Thomas Kienberger, 2024. "Tackling Uncertainty: Forecasting the Energy Consumption and Demand of an Electric Arc Furnace with Limited Knowledge on Process Parameters," Energies, MDPI, vol. 17(6), pages 1-20, March.
    20. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:16008-:d:1281522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.