IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i11p4099-4111.html
   My bibliography  Save this article

Application of Monte Carlo Simulation Technique to Design Flood Estimation: A Case Study for North Johnstone River in Queensland, Australia

Author

Listed:
  • James Charalambous
  • Ataur Rahman
  • Don Carroll

Abstract

The traditional rainfall-runoff modelling based on the Design Event Approach has some serious limitations as this ignores the probabilistic nature of the key flood producing variables in the modelling except for rainfall depth. A more holistic approach of design flood estimation such as the Joint Probability Approach/Monte Carlo simulation can overcome some of the limitations associated with the Design Event Approach. The Monte Carlo simulation technique is based on the principle that flood producing variables are random variables instead of fixed values. This allows accounting for the inherent variability in the flood producing variables in the rainfall-runoff modelling. This paper applies the Monte Carlo simulation technique and hydrologic model URBS to a large catchment with multiple pluviograph and stream gauging stations. It has been found that it is quite feasible to apply the Monte Carlo simulation technique to large catchments. The Monte Carlo simulation technique has much greater flexibility than the Design Event approach and can provide more realistic design flood estimates with multiple scenarios, which is likely to replace the Design Event Approach. The method developed here can be applied to other catchments in Australia and other countries. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • James Charalambous & Ataur Rahman & Don Carroll, 2013. "Application of Monte Carlo Simulation Technique to Design Flood Estimation: A Case Study for North Johnstone River in Queensland, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4099-4111, September.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:11:p:4099-4111
    DOI: 10.1007/s11269-013-0398-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0398-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0398-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javad Abolverdi & Davar Khalili, 2010. "Development of Regional Rainfall Annual Maxima for Southwestern Iran by L-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2501-2526, September.
    2. Jionghong Chen & Shenglian Guo & Yu Li & Pan Liu & Yanlai Zhou, 2013. "Joint Operation and Dynamic Control of Flood Limiting Water Levels for Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 749-763, February.
    3. M. Reddy & Poulomi Ganguli, 2012. "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3995-4018, November.
    4. Zahrahtul Zakaria & Ani Shabri & Ummi Ahmad, 2012. "Regional Frequency Analysis of Extreme Rainfalls in the West Coast of Peninsular Malaysia using Partial L-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4417-4433, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. Aziz & Sohail Rai & A. Rahman, 2015. "Design flood estimation in ungauged catchments using genetic algorithm-based artificial neural network (GAANN) technique for Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 805-821, June.
    2. El Bilali, Ali & Taghi, Youssef & Briouel, Omar & Taleb, Abdeslam & Brouziyne, Youssef, 2022. "A framework based on high-resolution imagery datasets and MCS for forecasting evaporation loss from small reservoirs in groundwater-based agriculture," Agricultural Water Management, Elsevier, vol. 262(C).
    3. Yichao Xu & Xinying Wang & Zhiqiang Jiang & Yi Liu & Li Zhang & Yukun Li, 2023. "An Improved Fineness Flood Risk Analysis Method Based on Digital Terrain Acquisition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3973-3998, August.
    4. Andreas Schumann, 2017. "Flood Safety versus Remaining Risks - Options and Limitations of Probabilistic Concepts in Flood Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3131-3145, August.
    5. Guangming Yu & Sa Wang & Qiwu Yu & Lei Wu & Yong Fan & Xiaoli He & Xia Zhou & Huanhuan Jia & Shu Zhang & Xiaojuan Tian, 2014. "The Regional Limit of Flood-Bearing Capability: A Theoretical Model and Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1921-1936, May.
    6. Wilfredo Caballero & Ataur Rahman, 2014. "Application of Monte Carlo simulation technique for flood estimation for two catchments in New South Wales, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1475-1488, December.
    7. A. Curran & Karin Bruijn & Alessio Domeneghetti & Federica Bianchi & M. Kok & Sergiy Vorogushyn & Attilio Castellarin, 2020. "Large-scale stochastic flood hazard analysis applied to the Po River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2027-2049, December.
    8. Carlos Llopis-Albert & José Merigó & Daniel Palacios-Marqués, 2015. "Structure Adaptation in Stochastic Inverse Methods for Integrating Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 95-107, January.
    9. Xiang Fu & An-Qiang Li & Hui Wang, 2014. "Allocation of Flood Control Capacity for a Multireservoir System Located at the Yangtze River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4823-4834, October.
    10. Ravinesh Deo & Hi-Ryong Byun & Jan Adamowski & Do-Woo Kim, 2015. "A Real-time Flood Monitoring Index Based on Daily Effective Precipitation and its Application to Brisbane and Lockyer Valley Flood Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4075-4093, September.
    11. Bahram Saghafian & Saeed Golian & Alireza Ghasemi, 2014. "Flood frequency analysis based on simulated peak discharges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 403-417, March.
    12. Yichao Xu & Zhiqiang Jiang & Yi Liu & Li Zhang & Jiahao Yang & Hairun Shu, 2023. "An Adaptive Ensemble Framework for Flood Forecasting and Its Application in a Small Watershed Using Distinct Rainfall Interpolation Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2195-2219, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamad Najib Ibrahim, 2022. "Assessment of the Uncertainty Associated with Statistical Modeling of Precipitation Extremes for Hydrologic Engineering Applications in Amman, Jordan," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    2. Qiao-feng Tan & Xu Wang & Pan Liu & Xiao-hui Lei & Si-yu Cai & Hao Wang & Yi Ji, 2017. "The Dynamic Control Bound of Flood Limited Water Level Considering Capacity Compensation Regulation and Flood Spatial Pattern Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 143-158, January.
    3. Carlos Llopis-Albert & José Merigó & Daniel Palacios-Marqués, 2015. "Structure Adaptation in Stochastic Inverse Methods for Integrating Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 95-107, January.
    4. Andrea Gioia & Maria Francesca Bruno & Vincenzo Totaro & Vito Iacobellis, 2020. "Parametric Assessment of Trend Test Power in a Changing Environment," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    5. Khaled Haddad & Ataur Rahman, 2014. "Derivation of short-duration design rainfalls using daily rainfall statistics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1391-1401, December.
    6. Yuyin Liang & Shuguang Liu & Yiping Guo & Hong Hua, 2017. "L-Moment-Based Regional Frequency Analysis of Annual Extreme Precipitation and its Uncertainty Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3899-3919, September.
    7. J. Ayuso-Muñoz & A. García-Marín & P. Ayuso-Ruiz & J. Estévez & R. Pizarro-Tapia & E. Taguas, 2015. "A More Efficient Rainfall Intensity-Duration-Frequency Relationship by Using an “at-site” Regional Frequency Analysis: Application at Mediterranean Climate Locations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3243-3263, July.
    8. Shuo Ouyang & Jianzhong Zhou & Chunlong Li & Xiang Liao & Hao Wang, 2015. "Optimal Design for Flood Limit Water Level of Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 445-457, January.
    9. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    10. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    11. Yanbin Li & Yubo Li & Kai Feng & Kaiyuan Tian & Tongxuan Huang, 2023. "Dynamic Control of Flood Limited Water Levels for Parallel Reservoirs by Considering Forecast Period Uncertainty," Sustainability, MDPI, vol. 15(24), pages 1-22, December.
    12. Dayang Wang & Dagang Wang & Chongxun Mo & Yi Du, 2021. "Risk variation of reservoir regulation during flood season based on bivariate statistical approach under climate change: a case study in the Chengbihe reservoir, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1585-1608, September.
    13. Guilherme Armando Almeida Pereira & Álvaro Veiga, 2019. "Periodic Copula Autoregressive Model Designed to Multivariate Streamflow Time Series Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3417-3431, August.
    14. Jiawei Zhou & Xiaohong Chen & Chuang Xu & Pan Wu, 2022. "Assessing Socioeconomic Drought Based on a Standardized Supply and Demand Water Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1937-1953, April.
    15. Zhou, Yanlai & Guo, Shenglian & Chang, Fi-John & Liu, Pan & Chen, Alexander B., 2018. "Methodology that improves water utilization and hydropower generation without increasing flood risk in mega cascade reservoirs," Energy, Elsevier, vol. 143(C), pages 785-796.
    16. Xiang Fu & An-Qiang Li & Hui Wang, 2014. "Allocation of Flood Control Capacity for a Multireservoir System Located at the Yangtze River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4823-4834, October.
    17. Aili Xie & Pan Liu & Shenglian Guo & Xiaoqi Zhang & Hao Jiang & Guang Yang, 2018. "Optimal Design of Seasonal Flood Limited Water Levels by Jointing Operation of the Reservoir and Floodplains," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 179-193, January.
    18. Neslihan Seckin & Murat Cobaner & Recep Yurtal & Tefaruk Haktanir, 2013. "Comparison of Artificial Neural Network Methods with L-moments for Estimating Flood Flow at Ungauged Sites: the Case of East Mediterranean River Basin, Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2103-2124, May.
    19. Zhongbo Zhang & Xiaoyan He & Simin Geng & Shuanghu Zhang & Liuqian Ding & Guangyuan Kan & Hui Li & Xiaoming Jiang, 2018. "An Improved “Dynamic Control Operation Module” for Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 449-464, January.
    20. Nejc Bezak & Matjaž Mikoš & Mojca Šraj, 2014. "Trivariate Frequency Analyses of Peak Discharge, Hydrograph Volume and Suspended Sediment Concentration Data Using Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(8), pages 2195-2212, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:11:p:4099-4111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.