IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v142y2018icp14-32.html
   My bibliography  Save this article

China’ energy-water nexus: Hydropower generation potential of joint operation of the Three Gorges and Qingjiang cascade reservoirs

Author

Listed:
  • Shang, Yizi
  • Lu, Shibao
  • Ye, Yuntao
  • Liu, Ronghua
  • Shang, Ling
  • Liu, Chunna
  • Meng, Xianyong
  • Li, Xiaofei
  • Fan, Qixiang

Abstract

The completion of Shuibuya, the last hydropower station to be constructed in the Qingjiang cascade, signifies China's successful development of the world's largest mixed cascade hydropower generation system. Joint operation of such cascaded hydropower stations is considered necessary to improve hydropower output in China. In this study, two modeling methods – routine and optimal operations – were adopted, based on existing rules of reservoir operation, to determine the effects of joint operation. To investigate the realistic and potential effects, the two models were computed using observed runoff data (1951–2009). The potential effects were identified by comparing the total hydropower generation two single cascades and their cogeneration. Under the routine operational mode, the incremental power generation of joint operation would be 5.73 × 108 kWh, an increase of 5‰ compared to isolated operation. However, even in isolation, if reservoir operation is optimized through the dynamic programming algorithm, the incremental power generation of the cascade would be 42.24 × 108 kWh, which is seven times that of joint operation with routine reservoir operation (5.73 × 108 kWh). The results showed that, under current reservoir operating rules, there is little room for improvement in hydropower generation, although joint operation could increase hydropower generation to a certain extent, especially in the reservoirs' refill and release stages. China must amend its existing operational mode for reservoirs to enhance the economic benefits of cascade hydropower stations. Furthermore, to meet increasing demands for both water and energy, carefully considered planning of constructing clusters of these stations is required.

Suggested Citation

  • Shang, Yizi & Lu, Shibao & Ye, Yuntao & Liu, Ronghua & Shang, Ling & Liu, Chunna & Meng, Xianyong & Li, Xiaofei & Fan, Qixiang, 2018. "China’ energy-water nexus: Hydropower generation potential of joint operation of the Three Gorges and Qingjiang cascade reservoirs," Energy, Elsevier, vol. 142(C), pages 14-32.
  • Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:14-32
    DOI: 10.1016/j.energy.2017.09.131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217316523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Hailun & Yan, Zheng, 2009. "Present situation and future prospect of hydropower in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1652-1656, August.
    2. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    3. David G. Luenberger & Yinyu Ye, 2008. "Linear and Nonlinear Programming," International Series in Operations Research and Management Science, Springer, edition 0, number 978-0-387-74503-9, January.
    4. Ying Zheng & Xudong Fu & Jiahua Wei, 2013. "Evaluation of Power Generation Efficiency of Cascade Hydropower Plants: A Case Study," Energies, MDPI, vol. 6(2), pages 1-13, February.
    5. Cheng, Chun-Tian & Shen, Jian-Jian & Wu, Xin-Yu & Chau, Kwok-wing, 2012. "Operation challenges for fast-growing China's hydropower systems and respondence to energy saving and emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2386-2393.
    6. Fang, Yiping & Deng, Wei, 2011. "The critical scale and section management of cascade hydropower exploitation in Southwestern China," Energy, Elsevier, vol. 36(10), pages 5944-5953.
    7. Chang, XiaoLin & Liu, Xinghong & Zhou, Wei, 2010. "Hydropower in China at present and its further development," Energy, Elsevier, vol. 35(11), pages 4400-4406.
    8. Fang-Fang Li & Jia-Hua Wei & Xu-Dong Fu & Xin-Yu Wan, 2012. "An Effective Approach to Long-Term Optimal Operation of Large-Scale Reservoir Systems: Case Study of the Three Gorges System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4073-4090, November.
    9. Jionghong Chen & Shenglian Guo & Yu Li & Pan Liu & Yanlai Zhou, 2013. "Joint Operation and Dynamic Control of Flood Limiting Water Levels for Cascade Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 749-763, February.
    10. Shenglian Guo & Jionghong Chen & Yu Li & Pan Liu & Tianyuan Li, 2011. "Joint Operation of the Multi-Reservoir System of the Three Gorges and the Qingjiang Cascade Reservoirs," Energies, MDPI, vol. 4(7), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Zhiqiang & Li, Rongbo & Li, Anqiang & Ji, Changming, 2018. "Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application," Energy, Elsevier, vol. 158(C), pages 693-708.
    2. Yun Chen & Zhigen Hu & Quan Liu & Shu Chen, 2020. "Evolutionary Game Analysis of Tripartite Cooperation Strategy under Mixed Development Environment of Cascade Hydropower Stations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1951-1970, April.
    3. Lu, Shibao & Ye, Weiwei & Xue, Yangang & Tang, Yao & Guo, Min, 2020. "Dynamic feature information extraction using the special empirical mode decomposition entropy value and index energy," Energy, Elsevier, vol. 193(C).
    4. Xinyu Wu & Ruixiang Cheng & Chuntian Cheng, 2022. "A Simplified Solution Method for End-of-Term Storage Energy Maximization Model of Cascaded Reservoirs," Energies, MDPI, vol. 15(12), pages 1-18, June.
    5. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    6. Te Wang & Zongkun Li & Wei Ge & Yadong Zhang & Yutie Jiao & Hua Zhang & Heqiang Sun & Pieter Gelder, 2023. "Risk assessment methods of cascade reservoir dams: a review and reflection," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1601-1622, January.
    7. Meng, Xuejiao & Chang, Jianxia & Wang, Xuebin & Wang, Yimin, 2019. "Multi-objective hydropower station operation using an improved cuckoo search algorithm," Energy, Elsevier, vol. 168(C), pages 425-439.
    8. Wang, Te & Li, Zongkun & Ge, Wei & Zhang, Hua & Zhang, Yadong & Sun, Heqiang & Jiao, Yutie, 2023. "Risk consequence assessment of dam breach in cascade reservoirs considering risk transmission and superposition," Energy, Elsevier, vol. 265(C).
    9. Ak, Mümtaz & Kentel, Elcin & Savasaneril, Secil, 2019. "Quantifying the revenue gain of operating a cascade hydropower plant system as a pumped-storage hydropower system," Renewable Energy, Elsevier, vol. 139(C), pages 739-752.
    10. Shibao Lu & Xiaoling Zhang & Yao Tang, 2020. "Evolutionary analysis on structural characteristics of water resource system in basins of Northern China," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 800-812, July.
    11. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    12. Zhang, Hua & Li, Zongkun & Ge, Wei & Zhang, Yadong & Wang, Te & Sun, Heqiang & Jiao, Yutie, 2024. "An extended Bayesian network model for calculating dam failure probability based on fuzzy sets and dynamic evidential reasoning," Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming, Zeng & Honglin, Li & Mingjuan, Ma & Na, Li & Song, Xue & Liang, Wang & Lilin, Peng, 2013. "Review on transaction status and relevant policies of southern route in China's West–East Power Transmission," Renewable Energy, Elsevier, vol. 60(C), pages 454-461.
    2. Ming, Zeng & Song, Xue & Mingjuan, Ma & Xiaoli, Zhu, 2013. "New energy bases and sustainable development in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 169-185.
    3. Zhou, Jianzhong & Zhang, Yongchuan & Zhang, Rui & Ouyang, Shuo & Wang, Xuemin & Liao, Xiang, 2015. "Integrated optimization of hydroelectric energy in the upper and middle Yangtze River," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 481-512.
    4. Hennig, Thomas & Wang, Wenling & Feng, Yan & Ou, Xiaokun & He, Daming, 2013. "Review of Yunnan's hydropower development. Comparing small and large hydropower projects regarding their environmental implications and socio-economic consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 585-595.
    5. Bin Xu & Ping-An Zhong & Xinyu Wan & Weiguo Zhang & Xuan Chen, 2012. "Dynamic Feasible Region Genetic Algorithm for Optimal Operation of a Multi-Reservoir System," Energies, MDPI, vol. 5(8), pages 1-17, August.
    6. Shahmohammadi, Ali & Sioshansi, Ramteen & Conejo, Antonio J. & Afsharnia, Saeed, 2018. "Market equilibria and interactions between strategic generation, wind, and storage," Applied Energy, Elsevier, vol. 220(C), pages 876-892.
    7. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    8. Bao, Chao & Fang, Chuang-lin, 2013. "Geographical and environmental perspectives for the sustainable development of renewable energy in urbanizing China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 464-474.
    9. Liu, Jian & Zuo, Jian & Sun, Zhiyu & Zillante, George & Chen, Xianming, 2013. "Sustainability in hydropower development—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 230-237.
    10. Ossai, Chinedu I. & Boswell, Brian & Davies, Ian J., 2014. "Sustainable asset integrity management: Strategic imperatives for economic renewable energy generation," Renewable Energy, Elsevier, vol. 67(C), pages 143-152.
    11. Li, Mingquan & Patiño-Echeverri, Dalia & Zhang, Junfeng (Jim), 2019. "Policies to promote energy efficiency and air emissions reductions in China's electric power generation sector during the 11th and 12th five-year plan periods: Achievements, remaining challenges, and ," Energy Policy, Elsevier, vol. 125(C), pages 429-444.
    12. Santalco, Aldo, 2012. "How and when China will exceed its renewable energy deployment targets," Energy Policy, Elsevier, vol. 51(C), pages 652-661.
    13. Aili Xie & Pan Liu & Shenglian Guo & Xiaoqi Zhang & Hao Jiang & Guang Yang, 2018. "Optimal Design of Seasonal Flood Limited Water Levels by Jointing Operation of the Reservoir and Floodplains," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 179-193, January.
    14. Perica Ilak & Slavko Krajcar & Ivan Rajšl & Marko Delimar, 2014. "Pricing Energy and Ancillary Services in a Day-Ahead Market for a Price-Taker Hydro Generating Company Using a Risk-Constrained Approach," Energies, MDPI, vol. 7(4), pages 1-26, April.
    15. Cheng, Chuntian & Liu, Benxi & Chau, Kwok-Wing & Li, Gang & Liao, Shengli, 2015. "China׳s small hydropower and its dispatching management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 43-55.
    16. Liu, Dunnan & Zhao, Weidong & Li, Zhihao & Xu, Xiaofeng & Xiao, Bowen & Niu, Dongxiao, 2018. "Can hydropower develop as expected in China? A scenario analysis based on system dynamics model," Energy, Elsevier, vol. 161(C), pages 118-129.
    17. Liping Wang & Minghao Liu & Boquan Wang & Jiajie Wu & Chuangang Li, 2017. "Study on Nested-Structured Load Shedding Method of Thermal Power Stations Based on Output Fluctuations," Energies, MDPI, vol. 10(10), pages 1-16, September.
    18. Fang, Yiping & Deng, Wei, 2011. "The critical scale and section management of cascade hydropower exploitation in Southwestern China," Energy, Elsevier, vol. 36(10), pages 5944-5953.
    19. Huan-Feng Duan & Xichao Gao, 2019. "Flooding Control and Hydro-Energy Assessment for Urban Stormwater Drainage Systems under Climate Change: Framework Development and Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3523-3545, August.
    20. Lejun Ma & Huan Wang & Baohong Lu & Changjun Qi, 2018. "Application of Strongly Constrained Space Particle Swarm Optimization to Optimal Operation of a Reservoir System," Sustainability, MDPI, vol. 10(12), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:14-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.