IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v110y2022i2d10.1007_s11069-021-04993-2.html
   My bibliography  Save this article

Flood hydrograph coincidence analysis of the upper Yangtze River and Dongting Lake, China

Author

Listed:
  • Chao Zhang

    (North China Electric Power University)

  • Changming Ji

    (North China Electric Power University)

  • Yi Wang

    (North China Electric Power University)

  • Qian Xiao

    (North China Electric Power University)

Abstract

In hydrological research, flood events can be analyzed by flood hydrograph coincidence. The duration of the flood hydrograph is a key variable to calculate the flood hydrograph coincidence risk probability and determining whether flood hydrograph coincidence occurs, while the actual duration of the flood hydrograph is neglected in most of existing related research. This paper creatively proposes a novel method to analyze the flood hydrograph coincidence risk probability by establishing a five-dimensional joint distribution of flood volumes, durations and interval time for two hydrologic stations. More specifically, taking the annual maximum flood of the upper Yangtze River and input from Dongting Lake as an example, the Pearson Type III and the mixed von Mises distributions were used to establish the marginal distribution of flood volumes, flood duration and interval time. Subsequently, the five-dimensional joint distribution based on vine copula was established to analyze the flood hydrograph coincidence risk probability. The results were verified by comparison with a historical flood sequence, which show that during 1951–2002, the hydrograph coincidence probabilities corresponding to its flood event coincidence volumes of 2.00 × 1011 m3, 4.00 × 1011 m3, and 6.00 × 1011 m3 are 0.213, 0.123, and 0.049, respectively. It has provided theoretical support for flood control safety and risk management in the middle and lower Yangtze River. This study also demonstrates the significant beneficial role of regulation by the Three Gorges Water Conservancy Project in mitigating flood risk of the Yangtze River. The hydrograph coincidence probability corresponding to its flood event coincidence volume of 2.00 × 1011 m3 has decreased by 0.141.

Suggested Citation

  • Chao Zhang & Changming Ji & Yi Wang & Qian Xiao, 2022. "Flood hydrograph coincidence analysis of the upper Yangtze River and Dongting Lake, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1339-1360, January.
  • Handle: RePEc:spr:nathaz:v:110:y:2022:i:2:d:10.1007_s11069-021-04993-2
    DOI: 10.1007/s11069-021-04993-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04993-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04993-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaizhong Li & Shaohong Wu & Erfu Dai & Zhongchun Xu, 2012. "Flood loss analysis and quantitative risk assessment in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 737-760, September.
    2. Wang, Hejia & Xiao, Weihua & Wang, Yicheng & Zhao, Yong & Lu, Fan & Yang, Mingzhi & Hou, Baodeng & Yang, Heng, 2019. "Assessment of the impact of climate change on hydropower potential in the Nanliujiang River basin of China," Energy, Elsevier, vol. 167(C), pages 950-959.
    3. Yongqin Chen & Qiang Zhang & Mingzhong Xiao & Vijay Singh, 2013. "Evaluation of risk of hydrological droughts by the trivariate Plackett copula in the East River basin (China)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 529-547, September.
    4. Chun-Ling Liu & Qiang Zhang & Vijay Singh & Ying Cui, 2011. "Copula-based evaluations of drought variations in Guangdong, South China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1533-1546, December.
    5. Ulf Schepsmeier & Claudia Czado, 2016. "Dependence modelling with regular vine copula models: a case-study for car crash simulation data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 415-429, April.
    6. Wu Zening & He Chentao & Huiliang Wang & Qian Zhang, 2020. "Reservoir Inflow Synchronization Analysis for Four Reservoirs on a Mainstream and its Tributaries in Flood Season Based on a Multivariate Copula Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2753-2770, July.
    7. Qingmu Su, 2020. "Long-term flood risk assessment of watersheds under climate change based on the game cross-efficiency DEA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2213-2237, December.
    8. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    9. M. Reddy & Poulomi Ganguli, 2012. "Bivariate Flood Frequency Analysis of Upper Godavari River Flows Using Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 3995-4018, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziqiang Xing & Denghua Yan & Cheng Zhang & Gang Wang & Dongdong Zhang, 2015. "Spatial Characterization and Bivariate Frequency Analysis of Precipitation and Runoff in the Upper Huai River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3291-3304, July.
    2. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    3. Zijun Qie & Lili Rong, 2017. "An integrated relative risk assessment model for urban disaster loss in view of disaster system theory," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 165-190, August.
    4. Liang, Kaiming & Zhong, Xuhua & Huang, Nongrong & Lampayan, Rubenito M. & Pan, Junfeng & Tian, Ka & Liu, Yanzhuo, 2016. "Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China," Agricultural Water Management, Elsevier, vol. 163(C), pages 319-331.
    5. Feng Gao & Yuhu Zhang & Xiulin Ren & Yunjun Yao & Zengchao Hao & Wanyuan Cai, 2018. "Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 155-172, May.
    6. Xiong-Fei Liu & Shi-Xin Wang & Yi Zhou & Fu-Tao Wang & Guang Yang & Wen-Liang Liu, 2016. "Spatial analysis of meteorological drought return periods in China using Copulas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 367-388, January.
    7. Otero, Noelia & Martius, Olivia & Allen, Sam & Bloomfield, Hannah & Schaefli, Bettina, 2022. "A copula-based assessment of renewable energy droughts across Europe," Renewable Energy, Elsevier, vol. 201(P1), pages 667-677.
    8. Guilherme Armando Almeida Pereira & Álvaro Veiga, 2019. "Periodic Copula Autoregressive Model Designed to Multivariate Streamflow Time Series Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3417-3431, August.
    9. Jiawei Zhou & Xiaohong Chen & Chuang Xu & Pan Wu, 2022. "Assessing Socioeconomic Drought Based on a Standardized Supply and Demand Water Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 1937-1953, April.
    10. Md Shahinoor Rahman & Liping Di, 2020. "A Systematic Review on Case Studies of Remote-Sensing-Based Flood Crop Loss Assessment," Agriculture, MDPI, vol. 10(4), pages 1-30, April.
    11. Dai, Meng & Huang, Shengzhi & Huang, Qiang & Leng, Guoyong & Guo, Yi & Wang, Lu & Fang, Wei & Li, Pei & Zheng, Xudong, 2020. "Assessing agricultural drought risk and its dynamic evolution characteristics," Agricultural Water Management, Elsevier, vol. 231(C).
    12. Zhongping Zeng & Yujia Li & Jinyu Lan & Abdur Rahim Hamidi, 2021. "Utilizing User-Generated Content and GIS for Flood Susceptibility Modeling in Mountainous Areas: A Case Study of Jian City in China," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
    13. Ning Chen & Lu Chen & Chaosheng Tang & Zhengjiang Wu & An Chen, 2019. "Disaster risk evaluation using factor analysis: a case study of Chinese regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 321-335, October.
    14. Ziyue Zeng & Guoqiang Tang & Di Long & Chao Zeng & Meihong Ma & Yang Hong & Hui Xu & Jing Xu, 2016. "A cascading flash flood guidance system: development and application in Yunnan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 2071-2093, December.
    15. Qingmu Su & Kaida Chen & Lingyun Liao, 2021. "The Impact of Land Use Change on Disaster Risk from the Perspective of Efficiency," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    16. Xiong-Fei Liu & Shi-Xin Wang & Yi Zhou & Fu-Tao Wang & Guang Yang & Wen-Liang Liu, 2016. "Spatial analysis of meteorological drought return periods in China using Copulas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 367-388, January.
    17. Elaheh Motevali Bashi Naeini & Ali Mohammad Akhoond-Ali & Fereydoun Radmanesh & Jahangir Abedi Koupai & Shahrokh Soltaninia, 2021. "Comparison of the Calculated Drought Return Periods Using Tri-variate and Bivariate Copula Functions Under Climate Change Condition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4855-4875, November.
    18. Candau, Fabien & Regnacq, Charles & Schlick, Julie, 2022. "Climate change, comparative advantage and the water capability to produce agricultural goods," World Development, Elsevier, vol. 158(C).
    19. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    20. Sajjad Abdollahi & Ali Mohammad Akhoond-Ali & Rasoul Mirabbasi & Jan Franklin Adamowski, 2019. "Probabilistic Event Based Rainfall-Runoff Modeling Using Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3799-3814, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:110:y:2022:i:2:d:10.1007_s11069-021-04993-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.