IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i1p95-107.html
   My bibliography  Save this article

Structure Adaptation in Stochastic Inverse Methods for Integrating Information

Author

Listed:
  • Carlos Llopis-Albert
  • José Merigó
  • Daniel Palacios-Marqués

Abstract

The use of inverse modeling techniques has greatly increased during the past several years because the advances in numerical modeling and increased computing power. Most of these methods require an a priori definition of the stochastic structure of conductivity (K) fields that is inferred only from K measurements. Therefore, the additional conditioning data, that implicitly integrate information not captured by K data, might lead to changes in the a priori model. Different inverse methods allow different degrees of structure adaptation to the whole set of data during the conditioning procedure. This paper illustrates the application of a powerful stochastic inverse method, the Gradual Conditioning (GC) method, to two different sets of data, both non-multiGaussian. One is based on a 2D synthetic aquifer and another on a real-complex case study, the Macrodispersion Experiment (MADE-2), site on Columbus Air Force Base in Mississippi (USA). We have analyzed how additional data change the a priori model on account of the perturbations performed when constraining stochastic simulations to data. Results show how the GC method tends to honour the a priori model in the synthetic case, showing fluctuations around it for the different simulated fields. However, in the 3D real case study, it is shown how the a priori structure is slightly modified not obeying just to fluctuations but possibly to the effect of the additional information on K, implicit in piezometric and concentration data. We conclude that implementing inversion methods able to yield a posteriori structure that incorporate more data might be of great importance in real cases in order to reduce uncertainty and to deal with risk assessment projects. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Carlos Llopis-Albert & José Merigó & Daniel Palacios-Marqués, 2015. "Structure Adaptation in Stochastic Inverse Methods for Integrating Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 95-107, January.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:1:p:95-107
    DOI: 10.1007/s11269-014-0829-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0829-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0829-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Charalambous & Ataur Rahman & Don Carroll, 2013. "Application of Monte Carlo Simulation Technique to Design Flood Estimation: A Case Study for North Johnstone River in Queensland, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4099-4111, September.
    2. Javad Abolverdi & Davar Khalili, 2010. "Development of Regional Rainfall Annual Maxima for Southwestern Iran by L-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2501-2526, September.
    3. Y. Mylopoulos & N. Theodosiou & N. Mylopoulos, 1999. "A Stochastic Optimization Approach in the Design of an Aquifer Remediation under Hydrogeologic Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(5), pages 335-351, October.
    4. Zahrahtul Zakaria & Ani Shabri & Ummi Ahmad, 2012. "Regional Frequency Analysis of Extreme Rainfalls in the West Coast of Peninsular Malaysia using Partial L-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4417-4433, December.
    5. R. Vázquez & K. Beven & J. Feyen, 2009. "GLUE Based Assessment on the Overall Predictions of a MIKE SHE Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(7), pages 1325-1349, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuyin Liang & Shuguang Liu & Yiping Guo & Hong Hua, 2017. "L-Moment-Based Regional Frequency Analysis of Annual Extreme Precipitation and its Uncertainty Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3899-3919, September.
    2. Mohamad Najib Ibrahim, 2022. "Assessment of the Uncertainty Associated with Statistical Modeling of Precipitation Extremes for Hydrologic Engineering Applications in Amman, Jordan," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    3. Khaled Haddad & Ataur Rahman, 2014. "Derivation of short-duration design rainfalls using daily rainfall statistics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1391-1401, December.
    4. James Charalambous & Ataur Rahman & Don Carroll, 2013. "Application of Monte Carlo Simulation Technique to Design Flood Estimation: A Case Study for North Johnstone River in Queensland, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4099-4111, September.
    5. Andrea Gioia & Maria Francesca Bruno & Vincenzo Totaro & Vito Iacobellis, 2020. "Parametric Assessment of Trend Test Power in a Changing Environment," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    6. J. Ayuso-Muñoz & A. García-Marín & P. Ayuso-Ruiz & J. Estévez & R. Pizarro-Tapia & E. Taguas, 2015. "A More Efficient Rainfall Intensity-Duration-Frequency Relationship by Using an “at-site” Regional Frequency Analysis: Application at Mediterranean Climate Locations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3243-3263, July.
    7. Ravinesh Deo & Hi-Ryong Byun & Jan Adamowski & Do-Woo Kim, 2015. "A Real-time Flood Monitoring Index Based on Daily Effective Precipitation and its Application to Brisbane and Lockyer Valley Flood Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4075-4093, September.
    8. Yichao Xu & Zhiqiang Jiang & Yi Liu & Li Zhang & Jiahao Yang & Hairun Shu, 2023. "An Adaptive Ensemble Framework for Flood Forecasting and Its Application in a Small Watershed Using Distinct Rainfall Interpolation Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2195-2219, March.
    9. Nicolaos Theodossiou, 2004. "Application of Non-Linear Simulation and Optimisation Models in Groundwater Aquifer Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(2), pages 125-141, April.
    10. Wei Zhang & Tian Li, 2015. "The Influence of Objective Function and Acceptability Threshold on Uncertainty Assessment of an Urban Drainage Hydraulic Model with Generalized Likelihood Uncertainty Estimation Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2059-2072, April.
    11. Guangming Yu & Sa Wang & Qiwu Yu & Lei Wu & Yong Fan & Xiaoli He & Xia Zhou & Huanhuan Jia & Shu Zhang & Xiaojuan Tian, 2014. "The Regional Limit of Flood-Bearing Capability: A Theoretical Model and Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1921-1936, May.
    12. Wendy Shinyie & Noriszura Ismail & Abdul Jemain, 2013. "Semi-parametric Estimation for Selecting Optimal Threshold of Extreme Rainfall Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2325-2352, May.
    13. Andreas Schumann, 2017. "Flood Safety versus Remaining Risks - Options and Limitations of Probabilistic Concepts in Flood Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3131-3145, August.
    14. Lingling Zhao & Jun Xia & Leszek Sobkowiak & Zhonggen Wang & Fengrui Guo, 2012. "Spatial Pattern Characterization and Multivariate Hydrological Frequency Analysis of Extreme Precipitation in the Pearl River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(12), pages 3619-3637, September.
    15. Jinjie Miao & Guoliang Liu & Bibo Cao & Yonghong Hao & Jianmimg Chen & Tian−Chyi Yeh, 2014. "Identification of Strong Karst Groundwater Runoff Belt by Cross Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2903-2916, August.
    16. Yichao Xu & Xinying Wang & Zhiqiang Jiang & Yi Liu & Li Zhang & Yukun Li, 2023. "An Improved Fineness Flood Risk Analysis Method Based on Digital Terrain Acquisition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3973-3998, August.
    17. Zahrahtul Zakaria & Ani Shabri & Ummi Ahmad, 2012. "Regional Frequency Analysis of Extreme Rainfalls in the West Coast of Peninsular Malaysia using Partial L-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4417-4433, December.
    18. Bahram Saghafian & Saeed Golian & Alireza Ghasemi, 2014. "Flood frequency analysis based on simulated peak discharges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 403-417, March.
    19. Xiaoyi Liu & Jonghyun Lee & Peter Kitanidis & Jack Parker & Ungtae Kim, 2012. "Value of Information as a Context-Specific Measure of Uncertainty in Groundwater Remediation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1513-1535, April.
    20. A. Yang & G. Huang & X. Qin, 2010. "An Integrated Simulation-Assessment Approach for Evaluating Health Risks of Groundwater Contamination Under Multiple Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3349-3369, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:1:p:95-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.