IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v77y2015i2p805-821.html
   My bibliography  Save this article

Design flood estimation in ungauged catchments using genetic algorithm-based artificial neural network (GAANN) technique for Australia

Author

Listed:
  • K. Aziz
  • Sohail Rai
  • A. Rahman

Abstract

This paper focuses on the development and testing of the genetic algorithm (GA)-based regional flood frequency analysis (RFFA) models for eastern parts of Australia. The GA-based techniques do not impose a fixed model structure on the data and can better deal with nonlinearity of the input and output relationship. These nonlinear techniques have been applied successfully in many hydrologic problems; however, there have been only limited applications of these techniques in RFFA problems, particularly in Australia. A data set comprising of 452 stations is used to test the GA for artificial neural networks (ANN) optimization known as GAANN. The results from GAANN were compared with the results from back-propagation for ANN optimization known as BPANN. An independent testing shows that both the GAANN and BPANN methods are quite successful in RFFA and can be used as alternative methods to check the validity of the traditional linear models such as quantile regression technique. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • K. Aziz & Sohail Rai & A. Rahman, 2015. "Design flood estimation in ungauged catchments using genetic algorithm-based artificial neural network (GAANN) technique for Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 805-821, June.
  • Handle: RePEc:spr:nathaz:v:77:y:2015:i:2:p:805-821
    DOI: 10.1007/s11069-015-1625-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1625-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1625-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Charalambous & Ataur Rahman & Don Carroll, 2013. "Application of Monte Carlo Simulation Technique to Design Flood Estimation: A Case Study for North Johnstone River in Queensland, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4099-4111, September.
    2. Dragan Savic & Godfrey Walters & James Davidson, 1999. "A Genetic Programming Approach to Rainfall-Runoff Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(3), pages 219-231, June.
    3. Elias Ishak & Khaled Haddad & Mohammad Zaman & Ataur Rahman, 2011. "Scaling property of regional floods in New South Wales Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1155-1167, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Jia Liu & Chuanzhe Li & Fuliang Yu & Yuebo Xie & Qingtai Qiu & Yufei Jiao & Guojuan Zhang, 2020. "Assessing the applicability of conceptual hydrological models for design flood estimation in small-scale watersheds of northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1135-1153, July.
    2. K. Haddad & A. Rahman, 2020. "Regional flood frequency analysis: evaluation of regions in cluster space using support vector regression," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 489-517, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilfredo Caballero & Ataur Rahman, 2014. "Application of Monte Carlo simulation technique for flood estimation for two catchments in New South Wales, Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1475-1488, December.
    2. Alireza B. Dariane & M. M. Javadianzadeh & L. Douglas James, 2016. "Developing an Efficient Auto-Calibration Algorithm for HEC-HMS Program," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(6), pages 1923-1937, April.
    3. Habib Akbari-Alashti & Omid Bozorg Haddad & Miguel MariƱo, 2015. "Evaluation of a Developed Discrete Time-Series Method in Flow Forecasting Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3211-3225, July.
    4. Gokmen Tayfur, 2017. "Modern Optimization Methods in Water Resources Planning, Engineering and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3205-3233, August.
    5. Sajjad Abdollahi & Jalil Raeisi & Mohammadreza Khalilianpour & Farshad Ahmadi & Ozgur Kisi, 2017. "Daily Mean Streamflow Prediction in Perennial and Non-Perennial Rivers Using Four Data Driven Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4855-4874, December.
    6. Jianzhu Li & Qiushuang Ma & Yu Tian & Yuming Lei & Ting Zhang & Ping Feng, 2019. "Flood scaling under nonstationarity in Daqinghe River basin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 675-696, September.
    7. Ravinesh Deo & Hi-Ryong Byun & Jan Adamowski & Do-Woo Kim, 2015. "A Real-time Flood Monitoring Index Based on Daily Effective Precipitation and its Application to Brisbane and Lockyer Valley Flood Events," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4075-4093, September.
    8. Yichao Xu & Zhiqiang Jiang & Yi Liu & Li Zhang & Jiahao Yang & Hairun Shu, 2023. "An Adaptive Ensemble Framework for Flood Forecasting and Its Application in a Small Watershed Using Distinct Rainfall Interpolation Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2195-2219, March.
    9. Madan Jha & Gaurav Nanda & Manoj Samuel, 2004. "Determining Hydraulic Characteristics of Production Wells using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(4), pages 353-377, August.
    10. Xiangwei Wang & Yizhe Yang & Jianglong Lv & Hailong He, 2023. "Past, present and future of the applications of machine learning in soil science and hydrology," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 18(2), pages 67-80.
    11. Ali Arefinia & Omid Bozorg-Haddad & Khaled Ahmadaali & Javad Bazrafshan & Babak Zolghadr-Asli & Xuefeng Chu, 2022. "Estimation of geographical variations in virtual water content and crop yield under climate change: comparison of three data mining approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8378-8396, June.
    12. Vincent Wolfs & Patrick Willems, 2017. "Modular Conceptual Modelling Approach and Software for Sewer Hydraulic Computations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 283-298, January.
    13. Rajib Bhattacharjya & Sandeep Chaurasia, 2013. "Geomorphology Based Semi-Distributed Approach for Modelling Rainfall-Runoff Process," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 567-579, January.
    14. Y. Yang & Patrick Ray & Casey Brown & Abedalrazq Khalil & Winston Yu, 2015. "Estimation of flood damage functions for river basin planning: a case study in Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2773-2791, February.
    15. Guangming Yu & Sa Wang & Qiwu Yu & Lei Wu & Yong Fan & Xiaoli He & Xia Zhou & Huanhuan Jia & Shu Zhang & Xiaojuan Tian, 2014. "The Regional Limit of Flood-Bearing Capability: A Theoretical Model and Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1921-1936, May.
    16. Andreas Schumann, 2017. "Flood Safety versus Remaining Risks - Options and Limitations of Probabilistic Concepts in Flood Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3131-3145, August.
    17. Yichao Xu & Xinying Wang & Zhiqiang Jiang & Yi Liu & Li Zhang & Yukun Li, 2023. "An Improved Fineness Flood Risk Analysis Method Based on Digital Terrain Acquisition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 3973-3998, August.
    18. Bahram Saghafian & Saeed Golian & Alireza Ghasemi, 2014. "Flood frequency analysis based on simulated peak discharges," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 403-417, March.
    19. Abdullah Al Mamoon & Niels E. Joergensen & Ataur Rahman & Hassan Qasem, 2016. "Design rainfall in Qatar: sensitivity to climate change scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1797-1810, April.
    20. A. Curran & Karin Bruijn & Alessio Domeneghetti & Federica Bianchi & M. Kok & Sergiy Vorogushyn & Attilio Castellarin, 2020. "Large-scale stochastic flood hazard analysis applied to the Po River," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2027-2049, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:77:y:2015:i:2:p:805-821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.