IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p17052-d1008433.html
   My bibliography  Save this article

Assessment of the Uncertainty Associated with Statistical Modeling of Precipitation Extremes for Hydrologic Engineering Applications in Amman, Jordan

Author

Listed:
  • Mohamad Najib Ibrahim

    (Department of Civil Engineering, Tafila Technical University, P.O. Box 179, Tafila 66110, Jordan)

Abstract

Estimates of extreme precipitation are commonly associated with different sources of uncertainty. One of the primary sources of uncertainty in the statistical modeling of precipitation extremes comes from extreme data series (i.e., sampling uncertainty). Therefore, this research aimed to quantify the sampling uncertainty in terms of confidence intervals. In addition, this article examined how the data record length affects predicted extreme precipitation estimates and data set statistics. A nonparametric bootstrap resample was utilized to quantify the precipitation quantile sampling distribution at a particular non exceedance probability. This sampling distribution can provide a point estimation of the precipitation quantile and the confidence interval at a particular non exceedance probability. It has been shown that the different types of probability distributions fit the extreme precipitation data series of various weather stations. Therefore, the uncertainty analysis should be conducted using the best-fit probability distribution for extreme precipitation data series rather than a predefined single probability distribution for all stations based on modern extreme value theory. According to the 95% confidence intervals, precipitation quantiles are subject to significant uncertainty and the band of the uncertainty intervals increases with the return period. These uncertainty bounds need to be integrated into any frequency analysis from historical data. The average, standard deviation, skewness and kurtosis are highly affected by the data record length. Thus, a longer record length is desirable to decrease the sampling uncertainty and, therefore, decrease the error in the predicted quantile values. Moreover, the results suggest that a series of at least 40 years of data records is needed to obtain reasonably accurate estimates of the distribution parameters and the precipitation quantiles for 100 years return periods and higher. Using only 20 to 25 years of data to obtain estimates of the higher return period quantile is risky, since it created high sampling variability relative to the full data length.

Suggested Citation

  • Mohamad Najib Ibrahim, 2022. "Assessment of the Uncertainty Associated with Statistical Modeling of Precipitation Extremes for Hydrologic Engineering Applications in Amman, Jordan," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:17052-:d:1008433
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/17052/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/17052/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javad Abolverdi & Davar Khalili, 2010. "Development of Regional Rainfall Annual Maxima for Southwestern Iran by L-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2501-2526, September.
    2. Asquith, William H., 2007. "L-moments and TL-moments of the generalized lambda distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4484-4496, May.
    3. Betül Saf, 2009. "Regional Flood Frequency Analysis Using L-Moments for the West Mediterranean Region of Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 531-551, February.
    4. Zahrahtul Zakaria & Ani Shabri & Ummi Ahmad, 2012. "Regional Frequency Analysis of Extreme Rainfalls in the West Coast of Peninsular Malaysia using Partial L-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4417-4433, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuyin Liang & Shuguang Liu & Yiping Guo & Hong Hua, 2017. "L-Moment-Based Regional Frequency Analysis of Annual Extreme Precipitation and its Uncertainty Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3899-3919, September.
    2. J. Ayuso-Muñoz & A. García-Marín & P. Ayuso-Ruiz & J. Estévez & R. Pizarro-Tapia & E. Taguas, 2015. "A More Efficient Rainfall Intensity-Duration-Frequency Relationship by Using an “at-site” Regional Frequency Analysis: Application at Mediterranean Climate Locations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(9), pages 3243-3263, July.
    3. Carlos Llopis-Albert & José Merigó & Daniel Palacios-Marqués, 2015. "Structure Adaptation in Stochastic Inverse Methods for Integrating Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 95-107, January.
    4. Andrea Gioia & Maria Francesca Bruno & Vincenzo Totaro & Vito Iacobellis, 2020. "Parametric Assessment of Trend Test Power in a Changing Environment," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    5. Neslihan Seckin & Murat Cobaner & Recep Yurtal & Tefaruk Haktanir, 2013. "Comparison of Artificial Neural Network Methods with L-moments for Estimating Flood Flow at Ungauged Sites: the Case of East Mediterranean River Basin, Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2103-2124, May.
    6. Khaled Haddad & Ataur Rahman, 2014. "Derivation of short-duration design rainfalls using daily rainfall statistics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1391-1401, December.
    7. James Charalambous & Ataur Rahman & Don Carroll, 2013. "Application of Monte Carlo Simulation Technique to Design Flood Estimation: A Case Study for North Johnstone River in Queensland, Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(11), pages 4099-4111, September.
    8. Zahrahtul Zakaria & Ani Shabri & Ummi Ahmad, 2012. "Regional Frequency Analysis of Extreme Rainfalls in the West Coast of Peninsular Malaysia using Partial L-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4417-4433, December.
    9. Steve Su, 2016. "Flexible modelling of survival curves for censored data," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-20, December.
    10. Yifan Jia & Songbai Song & Liting Ge, 2023. "Trimmed L-Moments of the Pearson Type III Distribution for Flood Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1321-1340, February.
    11. Zamir Hussain, 2017. "Estimation of flood quantiles at gauged and ungauged sites of the four major rivers of Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 107-123, March.
    12. Chalabi, Yohan / Y. & Scott, David J & Wuertz, Diethelm, 2012. "An asymmetry-steepness parameterization of the generalized lambda distribution," MPRA Paper 37814, University Library of Munich, Germany.
    13. A. Agarwal & R. Maheswaran & J Kurths & R. Khosa, 2016. "Wavelet Spectrum and Self-Organizing Maps-Based Approach for Hydrologic Regionalization -a Case Study in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4399-4413, September.
    14. Jung, Christopher & Schindler, Dirk, 2022. "On the influence of wind speed model resolution on the global technical wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    15. Karvanen, Juha & Nuutinen, Arto, 2008. "Characterizing the generalized lambda distribution by L-moments," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1971-1983, January.
    16. Jian Sha & Zeli Li & Dennis Swaney & Bongghi Hong & Wei Wang & Yuqiu Wang, 2014. "Application of a Bayesian Watershed Model Linking Multivariate Statistical Analysis to Support Watershed-Scale Nitrogen Management in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3681-3695, September.
    17. Pezhman Allahbakhshian-Farsani & Mehdi Vafakhah & Hadi Khosravi-Farsani & Elke Hertig, 2020. "Regional Flood Frequency Analysis Through Some Machine Learning Models in Semi-arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2887-2909, July.
    18. Myoung-Jin Um & Hyeseon Yun & Woncheol Cho & Jun-Haeng Heo, 2010. "Analysis of Orographic Precipitation on Jeju-Island Using Regional Frequency Analysis and Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1461-1487, May.
    19. Su, Steve, 2009. "Confidence intervals for quantiles using generalized lambda distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3324-3333, July.
    20. Javad Abolverdi & Davar Khalili, 2010. "Development of Regional Rainfall Annual Maxima for Southwestern Iran by L-Moments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2501-2526, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:17052-:d:1008433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.