Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-018-1456-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Meng Gan & Cong Wang & Chang’an Zhu, 2018. "Fault feature enhancement for rotating machinery based on quality factor analysis and manifold learning," Journal of Intelligent Manufacturing, Springer, vol. 29(2), pages 463-480, February.
- Chenxi Wu & Tefang Chen & Rong Jiang & Liwei Ning & Zheng Jiang, 2017. "A novel approach to wavelet selection and tree kernel construction for diagnosis of rolling element bearing fault," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1847-1858, December.
- Manjeevan Seera & Chee Peng Lim & Chu Kiong Loo, 2016. "Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1273-1285, December.
- Ahmed Ragab & Mohamed-Salah Ouali & Soumaya Yacout & Hany Osman, 2016. "Remaining useful life prediction using prognostic methodology based on logical analysis of data and Kaplan–Meier estimation," Journal of Intelligent Manufacturing, Springer, vol. 27(5), pages 943-958, October.
- Lei Xiao & Xiaohui Chen & Xinghui Zhang & Min Liu, 2017. "A novel approach for bearing remaining useful life estimation under neither failure nor suspension histories condition," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1893-1914, December.
- Ridha Ziani & Ahmed Felkaoui & Rabah Zegadi, 2017. "Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized Fisher’s criterion," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 405-417, February.
- Cong Wang & Meng Gan & Chang’an Zhu, 2017. "Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1377-1391, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
- Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Asif Khan & Hyunho Hwang & Heung Soo Kim, 2021. "Synthetic Data Augmentation and Deep Learning for the Fault Diagnosis of Rotating Machines," Mathematics, MDPI, vol. 9(18), pages 1-26, September.
- Zhicheng Xu & Vignesh Selvaraj & Sangkee Min, 2024. "State identification of a 5-axis ultra-precision CNC machine tool using energy consumption data assisted by multi-output densely connected 1D-CNN model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 147-160, January.
- Chen Zhao & Shichang Du & Jun Lv & Yafei Deng & Guilong Li, 2023. "A novel parallel classification network for classifying three-dimensional surface with point cloud data," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 515-527, February.
- Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Jinhai Chen & Wenyuan Zhang & Heng Wang, 2021. "Intelligent bearing structure and temperature field analysis based on finite element simulation for sustainable and green manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 745-756, March.
- Jannis N. Kahlen & Michael Andres & Albert Moser, 2021. "Improving Machine-Learning Diagnostics with Model-Based Data Augmentation Showcased for a Transformer Fault," Energies, MDPI, vol. 14(20), pages 1-20, October.
- Dengyu Xiao & Chengjin Qin & Honggan Yu & Yixiang Huang & Chengliang Liu, 2021. "Unsupervised deep representation learning for motor fault diagnosis by mutual information maximization," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 377-391, February.
- Mohamed Elhefnawy & Ahmed Ragab & Mohamed-Salah Ouali, 2022. "Fault classification in the process industry using polygon generation and deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1531-1544, June.
- Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
- Dionísio H. C. S. S. Martins & Amaro A. Lima & Milena F. Pinto & Douglas de O. Hemerly & Thiago de M. Prego & Fabrício L. e Silva & Luís Tarrataca & Ulisses A. Monteiro & Ricardo H. R. Gutiérrez & Die, 2023. "Hybrid data augmentation method for combined failure recognition in rotating machines," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1795-1813, April.
- Hanting Zhou & Wenhe Chen & Jing Liu & Longsheng Cheng & Min Xia, 2024. "Trustworthy and intelligent fault diagnosis with effective denoising and evidential stacked GRU neural network," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3523-3542, October.
- Ze Wei & Hui Liu & Xuewen Tao & Kai Pan & Rui Huang & Wenjing Ji & Jianhai Wang, 2023. "Insights into the Application of Machine Learning in Industrial Risk Assessment: A Bibliometric Mapping Analysis," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
- Tong Zhang & Haowen Chen & Xianqun Mao & Xin Zhu & Lefei Xu, 2024. "A Domain Generation Diagnosis Framework for Unseen Conditions Based on Adaptive Feature Fusion and Augmentation," Mathematics, MDPI, vol. 12(18), pages 1-15, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ke Zhao & Hongkai Jiang & Zhenghong Wu & Tengfei Lu, 2022. "A novel transfer learning fault diagnosis method based on Manifold Embedded Distribution Alignment with a little labeled data," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 151-165, January.
- Gang Wang & Feng Zhang & Bayi Cheng & Fang Fang, 2021. "DAMER: a novel diagnosis aggregation method with evidential reasoning rule for bearing fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 1-20, January.
- Jialin Li & Xueyi Li & David He & Yongzhi Qu, 2020. "Unsupervised rotating machinery fault diagnosis method based on integrated SAE–DBN and a binary processor," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1899-1916, December.
- Maroua Said & Khaoula ben Abdellafou & Okba Taouali, 2020. "Machine learning technique for data-driven fault detection of nonlinear processes," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 865-884, April.
- Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
- Mohamed Elhefnawy & Ahmed Ragab & Mohamed-Salah Ouali, 2023. "Polygon generation and video-to-video translation for time-series prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 261-279, January.
- Rubén Medina & Jean Carlo Macancela & Pablo Lucero & Diego Cabrera & René-Vinicio Sánchez & Mariela Cerrada, 2022. "Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1031-1055, April.
- Swapnil K. Gundewar & Prasad V. Kane, 2022. "Rolling element bearing fault diagnosis using supervised learning methods- artificial neural network and discriminant classifier," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2876-2894, December.
- Riku-Pekka Nikula & Konsta Karioja & Kauko Leiviskä & Esko Juuso, 2019. "Prediction of mechanical stress in roller leveler based on vibration measurements and steel strip properties," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1563-1579, April.
- Qifa Xu & Shixiang Lu & Weiyin Jia & Cuixia Jiang, 2020. "Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1467-1481, August.
- Lejeune, Miguel & Lozin, Vadim & Lozina, Irina & Ragab, Ahmed & Yacout, Soumaya, 2019. "Recent advances in the theory and practice of Logical Analysis of Data," European Journal of Operational Research, Elsevier, vol. 275(1), pages 1-15.
- Ahmed Elsheikh & Soumaya Yacout & Mohamed-Salah Ouali & Yasser Shaban, 2020. "Failure time prediction using adaptive logical analysis of survival curves and multiple machining signals," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 403-415, February.
- Seokho Kang, 2020. "Joint modeling of classification and regression for improving faulty wafer detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 319-326, February.
- Tian Wang & Meina Qiao & Mengyi Zhang & Yi Yang & Hichem Snoussi, 2020. "Data-driven prognostic method based on self-supervised learning approaches for fault detection," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1611-1619, October.
- Jungwon Yu & Jaeyel Jang & Jaeyeong Yoo & June Ho Park & Sungshin Kim, 2018. "A Fault Isolation Method via Classification and Regression Tree-Based Variable Ranking for Drum-Type Steam Boiler in Thermal Power Plant," Energies, MDPI, vol. 11(5), pages 1-19, May.
- Yixiao Zhao & Yihai He & Fengdi Liu & Xiao Han & Anqi Zhang & Di Zhou & Yao Li, 2020. "Operational risk modeling based on operational data fusion for multi-state manufacturing systems," Journal of Risk and Reliability, , vol. 234(2), pages 407-421, April.
- Yang Hui & Xuesong Mei & Gedong Jiang & Fei Zhao & Ziwei Ma & Tao Tao, 2022. "Assembly quality evaluation for linear axis of machine tool using data-driven modeling approach," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 753-769, March.
- Kedong Yan & Dongjing Miao & Cui Guo & Chanying Huang, 2021. "Efficient feature selection for logical analysis of large-scale multi-class datasets," Journal of Combinatorial Optimization, Springer, vol. 42(1), pages 1-23, July.
- Amine Mezaghcha & Ridha Ziani & Ahmed Felkaoui, 2023. "Empirical wavelet decomposition and BFindex for early detection of bearing defects," Journal of Risk and Reliability, , vol. 237(6), pages 1223-1233, December.
- Guo, Cui & Ryoo, Hong Seo, 2021. "On Pareto-Optimal Boolean Logical Patterns for Numerical Data," Applied Mathematics and Computation, Elsevier, vol. 403(C).
More about this item
Keywords
Fault diagnosis; Data augmentation; Deep residual learning; Rolling bearing; Convolutional neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:2:d:10.1007_s10845-018-1456-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.