IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6816-d659247.html
   My bibliography  Save this article

Improving Machine-Learning Diagnostics with Model-Based Data Augmentation Showcased for a Transformer Fault

Author

Listed:
  • Jannis N. Kahlen

    (Fraunhofer Institute for Applied Information Technology, Digital Energy, 53757 Sankt Augustin, Germany
    Institute for High Voltage Equipment and Grids, Digitalization and Energy Economics, RWTH Aachen University, 52062 Aachen, Germany)

  • Michael Andres

    (Fraunhofer Institute for Applied Information Technology, Digital Energy, 53757 Sankt Augustin, Germany)

  • Albert Moser

    (Institute for High Voltage Equipment and Grids, Digitalization and Energy Economics, RWTH Aachen University, 52062 Aachen, Germany)

Abstract

Machine-learning diagnostic systems are widely used to detect abnormal conditions in electrical equipment. Training robust and accurate diagnostic systems is challenging because only small databases of abnormal-condition data are available. However, the performance of the diagnostic systems depends on the quantity and quality of the data. The training database can be augmented utilizing data augmentation techniques that generate synthetic data to improve diagnostic performance. However, existing data augmentation techniques are generic methods that do not include additional information in the synthetic data. In this paper, we develop a model-based data augmentation technique integrating computer-implementable electromechanical models. Synthetic normal- and abnormal-condition data are generated with an electromechanical model and a stochastic parameter value sampling method. The model-based data augmentation is showcased to detect an abnormal condition of a distribution transformer. First, the synthetic data are compared with the measurements to verify the synthetic data. Then, ML-based diagnostic systems are created using model-based data augmentation and are compared with state-of-the-art diagnostic systems. It is shown that using the model-based data augmentation results in an improved accuracy compared to state-of-the-art diagnostic systems. This holds especially true when only a small abnormal-condition database is available.

Suggested Citation

  • Jannis N. Kahlen & Michael Andres & Albert Moser, 2021. "Improving Machine-Learning Diagnostics with Model-Based Data Augmentation Showcased for a Transformer Fault," Energies, MDPI, vol. 14(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6816-:d:659247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6816/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6816/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Castellani & Luigi Garibaldi & Alessandro Paolo Daga & Davide Astolfi & Francesco Natili, 2020. "Diagnosis of Faulty Wind Turbine Bearings Using Tower Vibration Measurements," Energies, MDPI, vol. 13(6), pages 1-18, March.
    2. Cheng Peng & Lingling Li & Qing Chen & Zhaohui Tang & Weihua Gui & Jing He, 2021. "A Fault Diagnosis Method for Rolling Bearings Based on Parameter Transfer Learning under Imbalance Data Sets," Energies, MDPI, vol. 14(4), pages 1-18, February.
    3. Shahriar Rahman Fahim & Subrata K. Sarker & S. M. Muyeen & Md. Rafiqul Islam Sheikh & Sajal K. Das, 2020. "Microgrid Fault Detection and Classification: Machine Learning Based Approach, Comparison, and Reviews," Energies, MDPI, vol. 13(13), pages 1-22, July.
    4. Chaowen Zhong & Ke Yan & Yuting Dai & Ning Jin & Bing Lou, 2019. "Energy Efficiency Solutions for Buildings: Automated Fault Diagnosis of Air Handling Units Using Generative Adversarial Networks," Energies, MDPI, vol. 12(3), pages 1-11, February.
    5. Xiang Li & Wei Zhang & Qian Ding & Jian-Qiao Sun, 2020. "Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 433-452, February.
    6. Xiaomu Duan & Tong Zhao & Jinxin Liu & Li Zhang & Liang Zou, 2018. "Analysis of Winding Vibration Characteristics of Power Transformers Based on the Finite-Element Method," Energies, MDPI, vol. 11(9), pages 1-19, September.
    7. Youcef Benmahamed & Omar Kherif & Madjid Teguar & Ahmed Boubakeur & Sherif S. M. Ghoneim, 2021. "Accuracy Improvement of Transformer Faults Diagnostic Based on DGA Data Using SVM-BA Classifier," Energies, MDPI, vol. 14(10), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, YongTeng & Ma, HongZhong, 2024. "Research progress on oil-immersed transformer mechanical condition identification based on vibration signals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Engin Baker & Secil Varbak Nese & Erkan Dursun, 2023. "Hybrid Condition Monitoring System for Power Transformer Fault Diagnosis," Energies, MDPI, vol. 16(3), pages 1-11, January.
    3. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.
    4. Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
    5. Ke Yan & Yuting Dai & Meiling Xu & Yuchang Mo, 2019. "Tunnel Surface Settlement Forecasting with Ensemble Learning," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
    6. Xiaoqin Zhang & Hongbin Zhu & Bo Li & Ruihan Wu & Jun Jiang, 2022. "Power Transformer Diagnosis Based on Dissolved Gases Analysis and Copula Function," Energies, MDPI, vol. 15(12), pages 1-14, June.
    7. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.
    8. Khalfan Al Kharusi & Abdelsalam El Haffar & Mostefa Mesbah, 2022. "Fault Detection and Classification in Transmission Lines Connected to Inverter-Based Generators Using Machine Learning," Energies, MDPI, vol. 15(15), pages 1-23, July.
    9. Jong-Yih Kuo & Shang-Yi You & Hui-Chi Lin & Chao-Yang Hsu & Baiying Lei, 2022. "Constructing Condition Monitoring Model of Wind Turbine Blades," Mathematics, MDPI, vol. 10(6), pages 1-13, March.
    10. Zhi-Jun Li & Wei-Gen Chen & Jie Shan & Zhi-Yong Yang & Ling-Yan Cao, 2022. "Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis," Energies, MDPI, vol. 15(9), pages 1-22, April.
    11. Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
    12. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    13. Yijin Li & Jianhua Lin & Geng Niu & Ming Wu & Xuteng Wei, 2021. "A Hilbert–Huang Transform-Based Adaptive Fault Detection and Classification Method for Microgrids," Energies, MDPI, vol. 14(16), pages 1-16, August.
    14. Asif Khan & Hyunho Hwang & Heung Soo Kim, 2021. "Synthetic Data Augmentation and Deep Learning for the Fault Diagnosis of Rotating Machines," Mathematics, MDPI, vol. 9(18), pages 1-26, September.
    15. Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Yeong Rim Noh & Salman Khalid & Heung Soo Kim & Seung-Kyum Choi, 2023. "Intelligent Fault Diagnosis of Robotic Strain Wave Gear Reducer Using Area-Metric-Based Sampling," Mathematics, MDPI, vol. 11(19), pages 1-22, September.
    17. Abdessamed Derdour & Hazem Ghassan Abdo & Hussein Almohamad & Abdullah Alodah & Ahmed Abdullah Al Dughairi & Sherif S. M. Ghoneim & Enas Ali, 2023. "Prediction of Groundwater Quality Index Using Classification Techniques in Arid Environments," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    18. Jong Ju Kim & June Ho Park, 2021. "A Novel Structure of a Power System Stabilizer for Microgrids," Energies, MDPI, vol. 14(4), pages 1-33, February.
    19. Wenqi Ge & Chenchen Zhang & Yi Xie & Ming Yu & Youhua Wang, 2021. "Analysis of the Electromechanical Characteristics of Power Transformer under Different Residual Fluxes," Energies, MDPI, vol. 14(24), pages 1-22, December.
    20. Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6816-:d:659247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.