A novel parallel classification network for classifying three-dimensional surface with point cloud data
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-021-01802-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Linmiao Zhang & Kaibo Wang & Nan Chen, 2016. "Monitoring wafers’ geometric quality using an additive Gaussian process model," IISE Transactions, Taylor & Francis Journals, vol. 48(1), pages 1-15, January.
- Lee J. Wells & Romina Dastoorian & Jaime A. Camelio, 2021. "A novel NURBS surface approach to statistically monitor manufacturing processes with point cloud data," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 329-345, February.
- Fangwei Ning & Yan Shi & Maolin Cai & Weiqing Xu, 2020. "Various realization methods of machine-part classification based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 2019-2032, December.
- Sue E. Stankus & Krystel K. Castillo-Villar, 2019. "An Improved multivariate generalised likelihood ratio control chart for the monitoring of point clouds from 3D laser scanners," International Journal of Production Research, Taylor & Francis Journals, vol. 57(8), pages 2344-2355, April.
- Xiang Li & Wei Zhang & Qian Ding & Jian-Qiao Sun, 2020. "Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 433-452, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xinhua Yao & Di Wang & Tao Yu & Congcong Luan & Jianzhong Fu, 2023. "A machining feature recognition approach based on hierarchical neural network for multi-feature point cloud models," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2599-2610, August.
- Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
- Asif Khan & Hyunho Hwang & Heung Soo Kim, 2021. "Synthetic Data Augmentation and Deep Learning for the Fault Diagnosis of Rotating Machines," Mathematics, MDPI, vol. 9(18), pages 1-26, September.
- Romina Dastoorian & Lee J. Wells, 2023. "A hybrid off-line/on-line quality control approach for real-time monitoring of high-density datasets," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 669-682, February.
- Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
- Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Wu, Zhangjun & Xu, Renli & Luo, Yuansheng & Shao, Haidong, 2024. "A holistic semi-supervised method for imbalanced fault diagnosis of rotational machinery with out-of-distribution samples," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Ze Wei & Hui Liu & Xuewen Tao & Kai Pan & Rui Huang & Wenjing Ji & Jianhai Wang, 2023. "Insights into the Application of Machine Learning in Industrial Risk Assessment: A Bibliometric Mapping Analysis," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
- Minyoung Lee & Joohyoung Jeon & Hongchul Lee, 2022. "Explainable AI for domain experts: a post Hoc analysis of deep learning for defect classification of TFT–LCD panels," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1747-1759, August.
- Kaishu Xia & Thorsten Wuest & Ramy Harik, 2023. "Automated manufacturability analysis in smart manufacturing systems: a signature mapping method for product-centered digital twins," Journal of Intelligent Manufacturing, Springer, vol. 34(7), pages 3069-3090, October.
- Jinhai Chen & Wenyuan Zhang & Heng Wang, 2021. "Intelligent bearing structure and temperature field analysis based on finite element simulation for sustainable and green manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 745-756, March.
- Jannis N. Kahlen & Michael Andres & Albert Moser, 2021. "Improving Machine-Learning Diagnostics with Model-Based Data Augmentation Showcased for a Transformer Fault," Energies, MDPI, vol. 14(20), pages 1-20, October.
- Dengyu Xiao & Chengjin Qin & Honggan Yu & Yixiang Huang & Chengliang Liu, 2021. "Unsupervised deep representation learning for motor fault diagnosis by mutual information maximization," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 377-391, February.
- Mohamed Elhefnawy & Ahmed Ragab & Mohamed-Salah Ouali, 2022. "Fault classification in the process industry using polygon generation and deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1531-1544, June.
- Zhicheng Xu & Vignesh Selvaraj & Sangkee Min, 2024. "State identification of a 5-axis ultra-precision CNC machine tool using energy consumption data assisted by multi-output densely connected 1D-CNN model," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 147-160, January.
- Jaeseung Baek & Myong K. Jeong & Elsayed A. Elsayed, 2024. "Spatial randomness-based anomaly detection approach for monitoring local variations in multimode surface topography," Annals of Operations Research, Springer, vol. 341(1), pages 173-195, October.
- Dionísio H. C. S. S. Martins & Amaro A. Lima & Milena F. Pinto & Douglas de O. Hemerly & Thiago de M. Prego & Fabrício L. e Silva & Luís Tarrataca & Ulisses A. Monteiro & Ricardo H. R. Gutiérrez & Die, 2023. "Hybrid data augmentation method for combined failure recognition in rotating machines," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1795-1813, April.
- Hanting Zhou & Wenhe Chen & Jing Liu & Longsheng Cheng & Min Xia, 2024. "Trustworthy and intelligent fault diagnosis with effective denoising and evidential stacked GRU neural network," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3523-3542, October.
- Tong Zhang & Haowen Chen & Xianqun Mao & Xin Zhu & Lefei Xu, 2024. "A Domain Generation Diagnosis Framework for Unseen Conditions Based on Adaptive Feature Fusion and Augmentation," Mathematics, MDPI, vol. 12(18), pages 1-15, September.
More about this item
Keywords
Three-dimensional surface; Quality classification; Point cloud data; Deep learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:34:y:2023:i:2:d:10.1007_s10845-021-01802-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.