IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i6d10.1007_s13198-022-01757-4.html
   My bibliography  Save this article

Rolling element bearing fault diagnosis using supervised learning methods- artificial neural network and discriminant classifier

Author

Listed:
  • Swapnil K. Gundewar

    (Visvesvaraya National Institute of Technology)

  • Prasad V. Kane

    (Visvesvaraya National Institute of Technology)

Abstract

Bearings are the principal component in the induction motor responsible for 50–60% of faults in an induction motor. Hence, detecting and diagnosing bearing faults in an induction motor is essential for reliable operation. Some soft computing techniques like artificial intelligence-based classifiers are always useful in fault diagnosis. This research diagnoses the bearing fault under three vibration signal conditions: raw vibration signal, filtered vibration signal, and wavelet-based denoised vibration signal. The statistical features such as RMS, kurtosis, standard deviation, variance, etc., are extracted from each condition. The db2 wavelet is selected based on the minimum Shannon entropy criteria for the wavelet denoising. Vibration signal data is collected from the experimental setup for four bearing conditions: healthy, outer race defect, ball defect, and cage defect. Total 1600 samples are collected from 2,000,000 data points for each condition. An artificial neural network and discriminant classifier are trained and tested for fault identification. Two other classifiers from each pedigree, i.e., support vector machine and radial basis function neural network, are also analyzed to compare the classification performance. It is observed that the ANN classifier stands the best among all, with a classification accuracy of 99.58% and a minimum computational time of 1.62 s.

Suggested Citation

  • Swapnil K. Gundewar & Prasad V. Kane, 2022. "Rolling element bearing fault diagnosis using supervised learning methods- artificial neural network and discriminant classifier," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2876-2894, December.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:6:d:10.1007_s13198-022-01757-4
    DOI: 10.1007/s13198-022-01757-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-022-01757-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-022-01757-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ridha Ziani & Ahmed Felkaoui & Rabah Zegadi, 2017. "Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized Fisher’s criterion," Journal of Intelligent Manufacturing, Springer, vol. 28(2), pages 405-417, February.
    2. Mohammad Ali Farsi & S. Masood Hosseini, 2019. "Statistical distributions comparison for remaining useful life prediction of components via ANN," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 429-436, June.
    3. Besma Bessam & Arezki Menacer & Mohamed Boumehraz & Hakima Cherif, 2017. "Wavelet transform and neural network techniques for inter-turn short circuit diagnosis and location in induction motor," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 478-488, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cherif, Hakima & Benakcha, Abdelhamid & Laib, Ismail & Chehaidia, Seif Eddine & Menacer, Arezky & Soudan, Bassel & Olabi, A.G., 2020. "Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor," Energy, Elsevier, vol. 212(C).
    2. Tian Wang & Meina Qiao & Mengyi Zhang & Yi Yang & Hichem Snoussi, 2020. "Data-driven prognostic method based on self-supervised learning approaches for fault detection," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1611-1619, October.
    3. Yang Hui & Xuesong Mei & Gedong Jiang & Fei Zhao & Ziwei Ma & Tao Tao, 2022. "Assembly quality evaluation for linear axis of machine tool using data-driven modeling approach," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 753-769, March.
    4. Wassim R. Abou Ghaida & Ayman Baklizi, 2022. "Prediction of future failures in the log-logistic distribution based on hybrid censored data," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1598-1606, August.
    5. Ding, Yifei & Jia, Minping & Miao, Qiuhua & Huang, Peng, 2021. "Remaining useful life estimation using deep metric transfer learning for kernel regression," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    6. Neeraj Khera & Shakeb A. Khan & Obaidur Rahman, 2020. "Valve regulated lead acid battery diagnostic system based on infrared thermal imaging and fuzzy algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 614-624, June.
    7. Amine Mezaghcha & Ridha Ziani & Ahmed Felkaoui, 2023. "Empirical wavelet decomposition and BFindex for early detection of bearing defects," Journal of Risk and Reliability, , vol. 237(6), pages 1223-1233, December.
    8. Bahareh Tajiani & Jørn Vatn, 2023. "Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1756-1777, October.
    9. Xiang Li & Wei Zhang & Qian Ding & Jian-Qiao Sun, 2020. "Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 433-452, February.
    10. Jialin Li & Xueyi Li & David He & Yongzhi Qu, 2020. "Unsupervised rotating machinery fault diagnosis method based on integrated SAE–DBN and a binary processor," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1899-1916, December.
    11. Dionísio H. C. S. S. Martins & Amaro A. Lima & Milena F. Pinto & Douglas de O. Hemerly & Thiago de M. Prego & Fabrício L. e Silva & Luís Tarrataca & Ulisses A. Monteiro & Ricardo H. R. Gutiérrez & Die, 2023. "Hybrid data augmentation method for combined failure recognition in rotating machines," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1795-1813, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:6:d:10.1007_s13198-022-01757-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.