State identification of a 5-axis ultra-precision CNC machine tool using energy consumption data assisted by multi-output densely connected 1D-CNN model
Author
Abstract
Suggested Citation
DOI: 10.1007/s10845-022-02030-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yanan Pan & Renke Kang & Zhigang Dong & Wenhao Du & Sen Yin & Yan Bao, 2022. "On-line prediction of ultrasonic elliptical vibration cutting surface roughness of tungsten heavy alloy based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 675-685, March.
- Andrew Glaeser & Vignesh Selvaraj & Sooyoung Lee & Yunseob Hwang & Kangsan Lee & Namjeong Lee & Seungchul Lee & Sangkee Min, 2021. "Applications of deep learning for fault detection in industrial cold forging," International Journal of Production Research, Taylor & Francis Journals, vol. 59(16), pages 4826-4835, August.
- Kendrik Yan Hong Lim & Pai Zheng & Chun-Hsien Chen, 2020. "A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1313-1337, August.
- Yunhan Kim & Taekyum Kim & Byeng D. Youn & Sung-Hoon Ahn, 2022. "Machining quality monitoring (MQM) in laser-assisted micro-milling of glass using cutting force signals: an image-based deep transfer learning," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1813-1828, August.
- Jinjiang Wang & Lunkuan Ye & Robert X. Gao & Chen Li & Laibin Zhang, 2019. "Digital Twin for rotating machinery fault diagnosis in smart manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 57(12), pages 3920-3934, June.
- Weili Cai & Wenjuan Zhang & Xiaofeng Hu & Yingchao Liu, 2020. "A hybrid information model based on long short-term memory network for tool condition monitoring," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1497-1510, August.
- Saideep Nannapaneni & Sankaran Mahadevan & Abhishek Dubey & Yung-Tsun Tina Lee, 2021. "Online monitoring and control of a cyber-physical manufacturing process under uncertainty," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1289-1304, June.
- Lu Liu & Siyuan Tian & Dingyu Xue & Tao Zhang & YangQuan Chen, 2019. "Industrial feedforward control technology: a review," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2819-2833, December.
- Xiang Li & Wei Zhang & Qian Ding & Jian-Qiao Sun, 2020. "Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 433-452, February.
- Nikhil M. Thoppil & V. Vasu & C. S. P. Rao, 2021. "Health indicator construction and remaining useful life estimation for mechanical systems using vibration signal prognostics," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 1001-1010, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sekar Kidambi Raju & Subhash Kannan, 2024. "Enhanced building energy harvesting through integrated piezoelectric materials and smart road traffic routing," Letters in Spatial and Resource Sciences, Springer, vol. 17(1), pages 1-31, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chia-Yu Hsu & Wei-Chen Liu, 2021. "Multiple time-series convolutional neural network for fault detection and diagnosis and empirical study in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 823-836, March.
- Georgios Falekas & Athanasios Karlis, 2021. "Digital Twin in Electrical Machine Control and Predictive Maintenance: State-of-the-Art and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-26, September.
- Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
- Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
- Wang, Jinrui & Zhang, Zongzhen & Liu, Zhiliang & Han, Baokun & Bao, Huaiqian & Ji, Shanshan, 2023. "Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Longhua Xu & Chuanzhen Huang & Chengwu Li & Jun Wang & Hanlian Liu & Xiaodan Wang, 2021. "Estimation of tool wear and optimization of cutting parameters based on novel ANFIS-PSO method toward intelligent machining," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 77-90, January.
- M. R. Pavan Kumar & Prabhu Jayagopal, 2023. "Context-sensitive lexicon for imbalanced text sentiment classification using bidirectional LSTM," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2123-2132, June.
- Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Qiwu Zhu & Qingyu Xiong & Zhengyi Yang & Yang Yu, 2023. "A novel feature-fusion-based end-to-end approach for remaining useful life prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3495-3505, December.
- Prashant Kumar & Salman Khalid & Heung Soo Kim, 2023. "Prognostics and Health Management of Rotating Machinery of Industrial Robot with Deep Learning Applications—A Review," Mathematics, MDPI, vol. 11(13), pages 1-37, July.
- Remigiusz Iwańkowicz & Radosław Rutkowski, 2023. "Digital Twin of Shipbuilding Process in Shipyard 4.0," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
- Siyi Ding & Xiaohu Zheng & Mingyu Wu & Qirui Yang, 2022. "A Novel Sustainable Processing Mode for Burr Classified Prediction of Weak Rigid Drilling Process Using a Fusion Modeling Method," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
- Loske, Dominik & Klumpp, Matthias, 2020. "Simulating the impact of digitalization on retail logistics efficiency," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Data Science and Innovation in Supply Chain Management: How Data Transforms the Value Chain. Proceedings of the Hamburg International Conference of Lo, volume 29, pages 77-111, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
- Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Saporiti, Nicolò & Cannas, Violetta Giada & Pozzi, Rossella & Rossi, Tommaso, 2023. "Challenges and countermeasures for digital twin implementation in manufacturing plants: A Delphi study," International Journal of Production Economics, Elsevier, vol. 261(C).
- Jianliang He & Yuxin Sun & Chen Yin & Yan He & Yulin Wang, 2023. "Cross-domain adaptation network based on attention mechanism for tool wear prediction," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3365-3387, December.
- Ze Wei & Hui Liu & Xuewen Tao & Kai Pan & Rui Huang & Wenjing Ji & Jianhai Wang, 2023. "Insights into the Application of Machine Learning in Industrial Risk Assessment: A Bibliometric Mapping Analysis," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
- Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Fromhold-Eisebith, Martina & Marschall, Philip & Peters, Robert & Thomes, Paul, 2021. "Torn between digitized future and context dependent past – How implementing ‘Industry 4.0’ production technologies could transform the German textile industry," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
More about this item
Keywords
Ultra-precision CNC machine tool; Densely connected convolutional neural network; Axis detection; Smart manufacturing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:1:d:10.1007_s10845-022-02030-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.