IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i12p1367-d574109.html
   My bibliography  Save this article

Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks

Author

Listed:
  • Sangho Lee

    (Department of Industrial and Systems Engineering, Dongguk University-Seoul, Seoul 04620, Korea)

  • Youngdoo Son

    (Department of Industrial and Systems Engineering, Dongguk University-Seoul, Seoul 04620, Korea)

Abstract

The use of machine learning algorithms to improve productivity and quality and to maximize efficiency in the steel industry has recently become a major trend. In this paper, we propose an algorithm that automates the setup in the cold-rolling process and maximizes productivity by predicting the roll forces and motor loads with multi-layer perceptron networks in addition to balancing the motor loads to increase production speed. The proposed method first constructs multilayer perceptron models with all available information from the components, the hot-rolling process, and the cold-rolling process. Then, the cold-rolling variables related to the normal part set-up are adjusted to balance the motor loads among the rolling stands. To validate the proposed method, we used a data set with 70,533 instances of 128 types of steels with 78 variables, extracted from the actual manufacturing process. The proposed method was found to be superior to the physical prediction model currently used for setups with regard to the prediction accuracy, motor load balancing, and production speed.

Suggested Citation

  • Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1367-:d:574109
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/12/1367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/12/1367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yun Bai & Zhenzhong Sun & Bo Zeng & Jianyu Long & Lin Li & José Valente Oliveira & Chuan Li, 2019. "A comparison of dimension reduction techniques for support vector machine modeling of multi-parameter manufacturing quality prediction," Journal of Intelligent Manufacturing, Springer, vol. 30(5), pages 2245-2256, June.
    2. Ki Bum Lee & Chang Ouk Kim, 2020. "Recurrent feature-incorporated convolutional neural network for virtual metrology of the chemical mechanical planarization process," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 73-86, January.
    3. Carbonneau, Real & Laframboise, Kevin & Vahidov, Rustam, 2008. "Application of machine learning techniques for supply chain demand forecasting," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1140-1154, February.
    4. Seokho Kang, 2020. "Joint modeling of classification and regression for improving faulty wafer detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 319-326, February.
    5. Lu Liu & Siyuan Tian & Dingyu Xue & Tao Zhang & YangQuan Chen, 2019. "Industrial feedforward control technology: a review," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2819-2833, December.
    6. Chien-Chang Hsu & Min-Sheng Chen, 2016. "Intelligent maintenance prediction system for LED wafer testing machine," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 335-342, April.
    7. Manjeevan Seera & Chee Peng Lim & Chu Kiong Loo, 2016. "Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1273-1285, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seokho Kang, 2020. "Joint modeling of classification and regression for improving faulty wafer detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 319-326, February.
    2. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    3. Lechtenberg, Sandra & de Siqueira Braga, Diego & Hellingrath, Bernd, 2019. "Automatic identification system (AIS) data based ship-supply forecasting," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Digital Transformation in Maritime and City Logistics: Smart Solutions for Logistics. Proceedings of the Hamburg International Conference of Logistics, volume 28, pages 3-24, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    4. Jinyuan Liu & Shouxi Wang & Nan Wei & Yi Yang & Yihao Lv & Xu Wang & Fanhua Zeng, 2023. "An Enhancement Method Based on Long Short-Term Memory Neural Network for Short-Term Natural Gas Consumption Forecasting," Energies, MDPI, vol. 16(3), pages 1-14, January.
    5. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou & Hicham Medromi, 2022. "A machine-learning based hybrid algorithm for strategic location of urban bundling hubs to support shared public transport," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3215-3258, October.
    6. Bin Shen & Hau-Ling Chan, 2017. "Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-26, February.
    7. Ulrich, Matthias & Jahnke, Hermann & Langrock, Roland & Pesch, Robert & Senge, Robin, 2021. "Distributional regression for demand forecasting in e-grocery," European Journal of Operational Research, Elsevier, vol. 294(3), pages 831-842.
    8. Malo Huard & Rémy Garnier & Gilles Stoltz, 2020. "Hierarchical robust aggregation of sales forecasts at aggregated levels in e-commerce, based on exponential smoothing and Holt's linear trend method," Working Papers hal-02794320, HAL.
    9. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    10. Xiaodan Zhu & Anh Ninh & Hui Zhao & Zhenming Liu, 2021. "Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3231-3252, September.
    11. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    12. Xu, Liming & Mak, Stephen & Brintrup, Alexandra, 2021. "Will bots take over the supply chain? Revisiting agent-based supply chain automation," International Journal of Production Economics, Elsevier, vol. 241(C).
    13. Herbert Jodlbauer & Manuel Brunner & Nadine Bachmann & Shailesh Tripathi & Matthias Thürer, 2023. "Supply Chain Management: A Structured Narrative Review of Current Challenges and Recommendations for Action," Logistics, MDPI, vol. 7(4), pages 1-19, October.
    14. Phong B. Dao, 2021. "Learning Feedforward Control Using Multiagent Control Approach for Motion Control Systems," Energies, MDPI, vol. 14(2), pages 1-17, January.
    15. Yupeng Wei & Dazhong Wu, 2024. "Material removal rate prediction in chemical mechanical planarization with conditional probabilistic autoencoder and stacking ensemble learning," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 115-127, January.
    16. Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
    17. Diyi Zhou & Shihua Gong & Ziyue Wang & Delong Li & Huaiqing Lu, 2021. "Error analysis based on error transfer theory and compensation strategy for LED chip visual localization systems," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1345-1359, June.
    18. Jeongsub Choi & Mengmeng Zhu & Jihoon Kang & Myong K. Jeong, 2024. "Convolutional neural network based multi-input multi-output model for multi-sensor multivariate virtual metrology in semiconductor manufacturing," Annals of Operations Research, Springer, vol. 339(1), pages 185-201, August.
    19. Chia-Yen Lee & Chen-Fu Chien, 2022. "Pitfalls and protocols of data science in manufacturing practice," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1189-1207, June.
    20. Dawid Szurgacz & Sergey Zhironkin & Michal Cehlár & Stefan Vöth & Sam Spearing & Ma Liqiang, 2021. "A Step-by-Step Procedure for Tests and Assessment of the Automatic Operation of a Powered Roof Support," Energies, MDPI, vol. 14(3), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1367-:d:574109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.