IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v28y2017i8d10.1007_s10845-015-1070-4.html
   My bibliography  Save this article

A novel approach to wavelet selection and tree kernel construction for diagnosis of rolling element bearing fault

Author

Listed:
  • Chenxi Wu

    (Central South University
    Hunan Institute of Engineering)

  • Tefang Chen

    (Central South University)

  • Rong Jiang

    (Hunan Institute of Engineering)

  • Liwei Ning

    (Hunan Institute of Engineering)

  • Zheng Jiang

    (Wuhan University of Science and Technology)

Abstract

A novel methodology for early diagnosis of rolling element bearing fault is employed based on continuous wavelet transform (CWT) and support vector machine (SVM). CWT is especially suited for analyzing non-stationary signals in time–frequency domain where time information is retained as well as frequency content. To better approximate non-stationary vibration signals from rolling element bearing, a wavelet choice criterion is established to select an appropriate mother wavelet for feature extraction. The Shannon wavelet is picked out of several considered wavelets. The classification tree kernels (CTK) are constructed to address nonlinear classification of the characteristic samples derived from the wavelet coefficients. By using Fuzzy pruning strategy, a large variety of classification trees are generated. The trees with diverse structures can effectively explore intrinsic information among samples. Then, the tree kernel matrices can be acquired through ensemble statistical learning, which eventually reveal the similarity of samples objectively and stably. Under such architecture of kernel methods, a classification tree kernel based support vector machine (CTKSVM) is proposed to identify bearing fault. The performance of the methodology involving CWT and CTKSVM (CWT–CTKSVM) is evaluated by cross validation and independent test. The results show that the CWT–CTKSVM totally is superior to other SVM methods with common kernels. Therefore, it is a prospective technique for detection and identification of rolling element bearing fault.

Suggested Citation

  • Chenxi Wu & Tefang Chen & Rong Jiang & Liwei Ning & Zheng Jiang, 2017. "A novel approach to wavelet selection and tree kernel construction for diagnosis of rolling element bearing fault," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1847-1858, December.
  • Handle: RePEc:spr:joinma:v:28:y:2017:i:8:d:10.1007_s10845-015-1070-4
    DOI: 10.1007/s10845-015-1070-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1070-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1070-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Zhao & Hongkai Jiang & Zhenghong Wu & Tengfei Lu, 2022. "A novel transfer learning fault diagnosis method based on Manifold Embedded Distribution Alignment with a little labeled data," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 151-165, January.
    2. Xiaohan Chen & Beike Zhang & Dong Gao, 2021. "Bearing fault diagnosis base on multi-scale CNN and LSTM model," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 971-987, April.
    3. Zhaoguang Xu & Yanzhong Dang & Peter Munro & Yuhang Wang, 2020. "A data-driven approach for constructing the component-failure mode matrix for FMEA," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 249-265, January.
    4. Maroua Said & Khaoula ben Abdellafou & Okba Taouali, 2020. "Machine learning technique for data-driven fault detection of nonlinear processes," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 865-884, April.
    5. Xiang Li & Wei Zhang & Qian Ding & Jian-Qiao Sun, 2020. "Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 433-452, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:28:y:2017:i:8:d:10.1007_s10845-015-1070-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.