IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v35y2024i7d10.1007_s10845-023-02221-1.html
   My bibliography  Save this article

Trustworthy and intelligent fault diagnosis with effective denoising and evidential stacked GRU neural network

Author

Listed:
  • Hanting Zhou

    (Nanjing University of Science and Technology)

  • Wenhe Chen

    (Nanjing University of Science and Technology
    Lancaster University)

  • Jing Liu

    (Northwestern Polytechnical University
    Northwestern Polytechnical University)

  • Longsheng Cheng

    (Nanjing University of Science and Technology)

  • Min Xia

    (Lancaster University)

Abstract

With the advances in Internet-of-Things and data mining technologies, deep learning-based approaches have been widely used for intelligent fault diagnosis of manufacturing assets. However, uncertainty caused by the non-stationary process data such as vibration signal and noise interference in practical working environments will greatly affect the performance and reliability of predictions. The present paper develops a trustworthy and intelligent fault diagnosis framework based on a two-stage joint denoising method and evidential neural networks. The proposed denoising method integrating the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and the independent component analysis (ICA) method can effectively reduce data uncertainty caused by noise interference. The stacked gated recurrent unit (SGRU) model has been incorporated into the evidential neural networks as a deep classifier. The proposed evidential SGRU (ESGRU) method can quantify the prediction uncertainty, which estimates the prediction trustworthiness. Predictive entropy and reliability diagrams are used as calibration methods to validate the effectiveness of uncertainty estimation. The proposed framework is validated by two case studies of rolling bearing fault diagnosis in variable noise conditions. Experimental results demonstrate that the proposed method can achieve a high denoising effect and provide reliable uncertainty prediction results which are significant for practical applications.

Suggested Citation

  • Hanting Zhou & Wenhe Chen & Jing Liu & Longsheng Cheng & Min Xia, 2024. "Trustworthy and intelligent fault diagnosis with effective denoising and evidential stacked GRU neural network," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3523-3542, October.
  • Handle: RePEc:spr:joinma:v:35:y:2024:i:7:d:10.1007_s10845-023-02221-1
    DOI: 10.1007/s10845-023-02221-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-023-02221-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-023-02221-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xianli Liu & Bowen Zhang & Xuebing Li & Shaoyang Liu & Caixu Yue & Steven Y. Liang, 2023. "An approach for tool wear prediction using customized DenseNet and GRU integrated model based on multi-sensor feature fusion," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 885-902, February.
    2. Rahman, Aowabin & Srikumar, Vivek & Smith, Amanda D., 2018. "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 212(C), pages 372-385.
    3. Qifa Xu & Shixiang Lu & Weiyin Jia & Cuixia Jiang, 2020. "Imbalanced fault diagnosis of rotating machinery via multi-domain feature extraction and cost-sensitive learning," Journal of Intelligent Manufacturing, Springer, vol. 31(6), pages 1467-1481, August.
    4. Han, Te & Li, Yan-Fu, 2022. "Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Xiang Li & Wei Zhang & Qian Ding & Jian-Qiao Sun, 2020. "Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 433-452, February.
    6. Huixin Tian & Daixu Ren & Kun Li & Zhen Zhao, 2021. "An adaptive update model based on improved Long Short Term Memory for online prediction of vibration signal," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 37-49, January.
    7. Xiaohan Chen & Beike Zhang & Dong Gao, 2021. "Bearing fault diagnosis base on multi-scale CNN and LSTM model," Journal of Intelligent Manufacturing, Springer, vol. 32(4), pages 971-987, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuixia Jiang & Hao Chen & Qifa Xu & Xiangxiang Wang, 2023. "Few-shot fault diagnosis of rotating machinery with two-branch prototypical networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1667-1681, April.
    2. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    3. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    4. Lu, Yakai & Tian, Zhe & Zhou, Ruoyu & Liu, Wenjing, 2021. "A general transfer learning-based framework for thermal load prediction in regional energy system," Energy, Elsevier, vol. 217(C).
    5. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    6. Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
    7. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    8. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    9. Atif Maqbool Khan & Artur Wyrwa, 2024. "A Survey of Quantitative Techniques in Electricity Consumption—A Global Perspective," Energies, MDPI, vol. 17(19), pages 1-38, September.
    10. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    11. Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    12. Dana-Mihaela Petroșanu & George Căruțașu & Nicoleta Luminița Căruțașu & Alexandru Pîrjan, 2019. "A Review of the Recent Developments in Integrating Machine Learning Models with Sensor Devices in the Smart Buildings Sector with a View to Attaining Enhanced Sensing, Energy Efficiency, and Optimal B," Energies, MDPI, vol. 12(24), pages 1-64, December.
    13. Cen, Zhongpei & Wang, Jun, 2019. "Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer," Energy, Elsevier, vol. 169(C), pages 160-171.
    14. Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Ye, Zhongnan & Cheng, Kuangly & Hsu, Shu-Chien & Wei, Hsi-Hsien & Cheung, Clara Man, 2021. "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach," Applied Energy, Elsevier, vol. 301(C).
    16. Ajith, Meenu & Martínez-Ramón, Manel, 2023. "Deep learning algorithms for very short term solar irradiance forecasting: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    17. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    18. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    19. Qing Yin & Chunmiao Han & Ailin Li & Xiao Liu & Ying Liu, 2024. "A Review of Research on Building Energy Consumption Prediction Models Based on Artificial Neural Networks," Sustainability, MDPI, vol. 16(17), pages 1-30, September.
    20. Tang, Zhenhao & Zhao, Gengnan & Ouyang, Tinghui, 2021. "Two-phase deep learning model for short-term wind direction forecasting," Renewable Energy, Elsevier, vol. 173(C), pages 1005-1016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:35:y:2024:i:7:d:10.1007_s10845-023-02221-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.