IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p697-d489762.html
   My bibliography  Save this article

A Step-by-Step Procedure for Tests and Assessment of the Automatic Operation of a Powered Roof Support

Author

Listed:
  • Dawid Szurgacz

    (Center of Hydraulics DOH Ltd., 41-906 Bytom, Poland)

  • Sergey Zhironkin

    (Department of Trade and Marketing, Siberian Federal University, 79 Svobodny av., 660041 Krasnoyarsk, Russia
    Department of Open Pit Mining, T.F. Gorbachev Kuzbass State Technical University, 28 Vesennya St., 650000 Kemerovo, Russia
    School of Core Engineering Education, National Research Tomsk Polytechnic University, 30 Lenina St., 634050 Tomsk, Russia)

  • Michal Cehlár

    (Faculty of Mining, Ecology, Process Technologies and Geotechnology, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia)

  • Stefan Vöth

    (Technische Hochschule Georg Agricola (THGA), Westhoffstraβe 15, 44791 Bochum, Germany)

  • Sam Spearing

    (School of Mines, China University of Mining and Technology, 1 Daxue Road, Tongshan District, Xuzhou 221116, China)

  • Ma Liqiang

    (School of Mines, China University of Mining and Technology, 1 Daxue Road, Tongshan District, Xuzhou 221116, China)

Abstract

A powered longwall mining system comprises three basic machines: a shearer, a scraper (longwall) conveyor, and a powered roof support. The powered roof support as a component of a longwall complex has two functions. It protects the working from roof rocks that fall to the area where the machines and people work and transports the machines and devices in the longwall as the mining operation proceeds further into the seam by means of hydraulic actuators that are adequately connected to the powered support. The actuators are controlled by a hydraulic or electro-hydraulic system. The tests and analyses presented in the developed procedure are oriented towards the possibility of introducing automatic control, without the participation of an operator. This is important for the exploitation of seams that are deposited at great depths. The primary objective was to develop a comprehensive methodology for testing and evaluating the possibility of using the system under operating conditions. The conclusions based on the analysis presented are a valuable source of information for the designers in terms of increasing the efficiency of the operation of the system and improving occupational safety. The authors have proposed a procedure for testing and evaluation to introduce an automatic control system into the operating conditions. The procedure combines four areas. Tests and analyses were carried out in order to determine the extent to which the system could be potentially used in the future. The presented solution includes certification and executive documentation.

Suggested Citation

  • Dawid Szurgacz & Sergey Zhironkin & Michal Cehlár & Stefan Vöth & Sam Spearing & Ma Liqiang, 2021. "A Step-by-Step Procedure for Tests and Assessment of the Automatic Operation of a Powered Roof Support," Energies, MDPI, vol. 14(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:697-:d:489762
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/697/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/697/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jarosław Brodny & Magdalena Tutak, 2020. "Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources," Energies, MDPI, vol. 13(4), pages 1-37, February.
    2. Dawid Szurgacz & Jarosław Brodny, 2020. "Adapting the Powered Roof Support to Diverse Mining and Geological Conditions," Energies, MDPI, vol. 13(2), pages 1-22, January.
    3. Manjeevan Seera & Chee Peng Lim & Chu Kiong Loo, 2016. "Motor fault detection and diagnosis using a hybrid FMM-CART model with online learning," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1273-1285, December.
    4. Magdalena Tutak & Jarosław Brodny, 2019. "Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process," Energies, MDPI, vol. 12(20), pages 1-28, October.
    5. Jarosław Brodny & Magdalena Tutak, 2019. "Analysing the Utilisation Effectiveness of Mining Machines Using Independent Data Acquisition Systems: A Case Study," Energies, MDPI, vol. 12(13), pages 1-15, June.
    6. Magdalena Tutak & Jarosław Brodny, 2018. "Analysis of the Impact of Auxiliary Ventilation Equipment on the Distribution and Concentration of Methane in the Tailgate," Energies, MDPI, vol. 11(11), pages 1-28, November.
    7. Chen Wang & Shihao Tu, 2015. "Selection of an Appropriate Mechanized Mining Technical Process for Thin Coal Seam Mining," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-10, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawid Szurgacz, 2021. "Dynamic Analysis for the Hydraulic Leg Power of a Powered Roof Support," Energies, MDPI, vol. 14(18), pages 1-12, September.
    2. Sergey Zhironkin & Dawid Szurgacz, 2022. "Mining Technologies Innovative Development: Industrial, Environmental and Economic Perspectives," Energies, MDPI, vol. 15(5), pages 1-5, February.
    3. Sergey Zhironkin & Dawid Szurgacz, 2021. "Mining Technologies Innovative Development: Economic and Sustainable Outlook," Energies, MDPI, vol. 14(24), pages 1-9, December.
    4. Dawid Szurgacz & Beata Borska & Sergey Zhironkin & Ryszard Diederichs & Anthony J. S. Spearing, 2022. "Optimization of the Load Capacity System of Powered Roof Support: A Review," Energies, MDPI, vol. 15(16), pages 1-15, August.
    5. Dawid Szurgacz & Beata Borska & Ryszard Diederichs & Anthony J. S. Spearing & Sergey Zhironkin, 2023. "Minimizing Internal Leaks of a Powered Roof Support’s Hydraulic Prop Based on Double Block with Charging," Energies, MDPI, vol. 16(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawid Szurgacz & Sergey Zhironkin & Stefan Vöth & Jiří Pokorný & A.J.S. (Sam) Spearing & Michal Cehlár & Marta Stempniak & Leszek Sobik, 2021. "Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure," Energies, MDPI, vol. 14(11), pages 1-18, June.
    2. Jarosław Brodny & Magdalena Tutak, 2020. "The Use of Artificial Neural Networks to Analyze Greenhouse Gas and Air Pollutant Emissions from the Mining and Quarrying Sector in the European Union," Energies, MDPI, vol. 13(8), pages 1-31, April.
    3. Rafał Trzaska & Adam Sulich & Michał Organa & Jerzy Niemczyk & Bartosz Jasiński, 2021. "Digitalization Business Strategies in Energy Sector: Solving Problems with Uncertainty under Industry 4.0 Conditions," Energies, MDPI, vol. 14(23), pages 1-21, November.
    4. Sergey Zhironkin & Alexey Selyukov & Magerram Gasanov, 2020. "Parameters of Transition from Deepening Longitudinal to Continuous Lateral Surface Mining Methods to Decrease Environmental Damage in Coal Clusters," Energies, MDPI, vol. 13(13), pages 1-22, June.
    5. Jarosław Brodny & Magdalena Tutak & Saqib Ahmad Saki, 2020. "Forecasting the Structure of Energy Production from Renewable Energy Sources and Biofuels in Poland," Energies, MDPI, vol. 13(10), pages 1-31, May.
    6. Magdalena Tutak & Jarosław Brodny & Dawid Szurgacz & Leszek Sobik & Sergey Zhironkin, 2020. "The Impact of the Ventilation System on the Methane Release Hazard and Spontaneous Combustion of Coal in the Area of Exploitation—A Case Study," Energies, MDPI, vol. 13(18), pages 1-31, September.
    7. Nan Zhang & Wei Liu & Yun Zhang & Pengfei Shan & Xilin Shi, 2020. "Microscopic Pore Structure of Surrounding Rock for Underground Strategic Petroleum Reserve (SPR) Caverns in Bedded Rock Salt," Energies, MDPI, vol. 13(7), pages 1-22, March.
    8. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    9. Sangho Lee & Youngdoo Son, 2021. "Motor Load Balancing with Roll Force Prediction for a Cold-Rolling Setup with Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    10. Jiang, Yihuo & Ni, Hongliang & Ni, Yihan & Guo, Xiaomei, 2023. "Assessing environmental, social, and governance performance and natural resource management policies in China's dual carbon era for a green economy," Resources Policy, Elsevier, vol. 85(PB).
    11. Katarzyna Chudy-Laskowska & Tomasz Pisula, 2022. "An Analysis of the Use of Energy from Conventional Fossil Fuels and Green Renewable Energy in the Context of the European Union’s Planned Energy Transformation," Energies, MDPI, vol. 15(19), pages 1-23, October.
    12. Yang Yu & Jianbiao Bai & Xiangyu Wang & Lianying Zhang, 2020. "Control of the Surrounding Rock of a Goaf-Side Entry Driving Heading Mining Face," Sustainability, MDPI, vol. 12(7), pages 1-16, March.
    13. Yongkang Yang & Qiaoyi Du & Chenlong Wang & Yu Bai, 2020. "Research on the Method of Methane Emission Prediction Using Improved Grey Radial Basis Function Neural Network Model," Energies, MDPI, vol. 13(22), pages 1-15, November.
    14. Gürler, Hasan Emin & Özçalıcı, Mehmet & Pamucar, Dragan, 2024. "Determining criteria weights with genetic algorithms for multi-criteria decision making methods: The case of logistics performance index rankings of European Union countries," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    15. Liu, Hao & Li, Zenghua & Yang, Yongliang & Miao, Guodong, 2023. "Study on the thermal behavior of coal during the spontaneous combustion latency," Energy, Elsevier, vol. 281(C).
    16. Marcin Karbownik & Agnieszka Dudzińska & Jarosław Strzymczok, 2022. "Multi-Parameter Analysis of Gas Losses Occurring during the Determination of Methane-Bearing Capacity in Hard Coal Beds," Energies, MDPI, vol. 15(9), pages 1-17, April.
    17. Zhiguo LU & Wenjun JU & Fuqiang GAO & Youliang FENG & Zhuoyue SUN & Hao WANG & Kang YI, 2019. "A New Bursting Liability Evaluation Index for Coal –The Effective Elastic Strain Energy Release Rate," Energies, MDPI, vol. 12(19), pages 1-15, September.
    18. Magdalena Tutak & Jarosław Brodny & Dominika Siwiec & Robert Ulewicz & Peter Bindzár, 2020. "Studying the Level of Sustainable Energy Development of the European Union Countries and Their Similarity Based on the Economic and Demographic Potential," Energies, MDPI, vol. 13(24), pages 1-31, December.
    19. Huiuk Yi & Minsik Kim & Dongkil Lee & Jongmyung Park, 2022. "Applications of Computational Fluid Dynamics for Mine Ventilation in Mineral Development," Energies, MDPI, vol. 15(22), pages 1-24, November.
    20. Katarzyna Tobór-Osadnik & Bożena Gajdzik & Grzegorz Strzelec, 2023. "Configurational Path of Decarbonisation Based on Coal Mine Methane (CMM): An Econometric Model for the Polish Mining Industry," Sustainability, MDPI, vol. 15(13), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:697-:d:489762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.