IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i4d10.1007_s10845-020-01712-9.html
   My bibliography  Save this article

Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM

Author

Listed:
  • Rubén Medina

    (Universidad de Los Andes)

  • Jean Carlo Macancela

    (Universidad Politécnica Salesiana)

  • Pablo Lucero

    (Universidad Politécnica Salesiana)

  • Diego Cabrera

    (Universidad Politécnica Salesiana)

  • René-Vinicio Sánchez

    (Universidad Politécnica Salesiana)

  • Mariela Cerrada

    (Universidad Politécnica Salesiana)

Abstract

This paper describes two algorithms for feature extraction from the Poincaré plot which is constructed with the vibration signals measured in roller bearings and gearboxes. The extracted features are used for classifying 10 types of fault conditions in a gearbox and 7 types of fault conditions a roller bearings. Both vibration signal datasets were acquired at different loads and speeds. The feature extraction using Algorithm 1 performs the feature calculation from the Poincaré plot constructed with the raw vibration signals. In contrast, the Algorithm 2 requires an additional stage where the vibration signal is pre-processed for identifying the peaks of the signal. This peak sequence is equivalent to a non-uniform sub-sampling of the vibration signal that retains relevant information useful for fault classification. The fault classification is attained by using a multi-class Support Vector Machine. The proposed method is tested using the tenfold cross-validation. Results show that both algorithms could attain classification accuracies as high as 99.3% for the gearbox dataset and 100% for the roller bearings. The results are compared to other classification approaches performed on the same datasets by using other different features. The comparison shows that the approach in this paper has a performance as good as obtained by using well-known statistical features.

Suggested Citation

  • Rubén Medina & Jean Carlo Macancela & Pablo Lucero & Diego Cabrera & René-Vinicio Sánchez & Mariela Cerrada, 2022. "Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1031-1055, April.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:4:d:10.1007_s10845-020-01712-9
    DOI: 10.1007/s10845-020-01712-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01712-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01712-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wentao Huang & Fanzhao Kong & Xuezeng Zhao, 2018. "Spur bevel gearbox fault diagnosis using wavelet packet transform and rough set theory," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1257-1271, August.
    2. Timo Oertzen & Steven Boker, 2010. "Time Delay Embedding Increases Estimation Precision of Models of Intraindividual Variability," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 158-175, March.
    3. Deepam Goyal & Anurag Choudhary & B. S. Pabla & S. S. Dhami, 2020. "Support vector machines based non-contact fault diagnosis system for bearings," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1275-1289, June.
    4. Qiang Zhou & Ping Yan & Huayi Liu & Yang Xin, 2019. "A hybrid fault diagnosis method for mechanical components based on ontology and signal analysis," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1693-1715, April.
    5. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Eiriksson, Egill Thor, 2016. "Analysing RMS and peak values of vibration signals for condition monitoring of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 91(C), pages 90-106.
    6. Cong Wang & Meng Gan & Chang’an Zhu, 2017. "Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1377-1391, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changyuan Yang & Sai Ma & Qinkai Han, 2023. "Unified discriminant manifold learning for rotating machinery fault diagnosis," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3483-3494, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Zhao & Hongkai Jiang & Zhenghong Wu & Tengfei Lu, 2022. "A novel transfer learning fault diagnosis method based on Manifold Embedded Distribution Alignment with a little labeled data," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 151-165, January.
    2. Yiping Gao & Liang Gao & Xinyu Li & Yuwei Zheng, 2020. "A zero-shot learning method for fault diagnosis under unknown working loads," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 899-909, April.
    3. Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.
    4. Lei Fu & Tiantian Zhu & Kai Zhu & Yiling Yang, 2019. "Condition Monitoring for the Roller Bearings of Wind Turbines under Variable Working Conditions Based on the Fisher Score and Permutation Entropy," Energies, MDPI, vol. 12(16), pages 1-20, August.
    5. Andhi Indira Kusuma & Yi-Mei Huang, 2023. "Product quality prediction in pulsed laser cutting of silicon steel sheet using vibration signals and deep neural network," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1683-1699, April.
    6. Xin Wu & Hong Wang & Guoqian Jiang & Ping Xie & Xiaoli Li, 2019. "Monitoring Wind Turbine Gearbox with Echo State Network Modeling and Dynamic Threshold Using SCADA Vibration Data," Energies, MDPI, vol. 12(6), pages 1-19, March.
    7. Cuixia Jiang & Hao Chen & Qifa Xu & Xiangxiang Wang, 2023. "Few-shot fault diagnosis of rotating machinery with two-branch prototypical networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1667-1681, April.
    8. Dechen Yao & Hengchang Liu & Jianwei Yang & Jiao Zhang, 2021. "Implementation of a novel algorithm of wheelset and axle box concurrent fault identification based on an efficient neural network with the attention mechanism," Journal of Intelligent Manufacturing, Springer, vol. 32(3), pages 729-743, March.
    9. Xiang Li & Wei Zhang & Qian Ding & Jian-Qiao Sun, 2020. "Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 433-452, February.
    10. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    11. Christian Kubik & Sebastian Michael Knauer & Peter Groche, 2022. "Smart sheet metal forming: importance of data acquisition, preprocessing and transformation on the performance of a multiclass support vector machine for predicting wear states during blanking," Journal of Intelligent Manufacturing, Springer, vol. 33(1), pages 259-282, January.
    12. Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
    13. He, Yuanbiao & Qiao, Zijian & Xie, Biaobiao & Ning, Siyuan & Li, Zhecong & Kumar, Anil & Lai, Zhihui, 2024. "Two-stage benefits of internal and external noise to enhance early fault detection of machinery by exciting fractional SR," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    14. Tan Yanghong & Zhang Haixia & Zhou Ye, 2018. "A Simple-to-Implement Fault Diagnosis Method for Open Switch Fault in Wind System PMSG Drives without Threshold Setting," Energies, MDPI, vol. 11(10), pages 1-18, September.
    15. Zilong Zhuang & Liangxun Guo & Zizhao Huang & Yanning Sun & Wei Qin & Zhao-Hui Sun, 2021. "DyS-IENN: a novel multiclass imbalanced learning method for early warning of tardiness in rocket final assembly process," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2197-2207, December.
    16. Pan, Yubin & Hong, Rongjing & Chen, Jie & Wu, Weiwei, 2020. "A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox," Renewable Energy, Elsevier, vol. 152(C), pages 138-154.
    17. Ravi Kumar Pandit & Davide Astolfi & Isidro Durazo Cardenas, 2023. "A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines," Energies, MDPI, vol. 16(4), pages 1-17, February.
    18. Liu, Dongdong & Cui, Lingli & Cheng, Weidong, 2023. "Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation," Renewable Energy, Elsevier, vol. 206(C), pages 645-657.
    19. Pinjia Zhang & Delong Lu, 2019. "A Survey of Condition Monitoring and Fault Diagnosis toward Integrated O&M for Wind Turbines," Energies, MDPI, vol. 12(14), pages 1-22, July.
    20. Minh-Quang Tran & Yi-Chen Li & Chen-Yang Lan & Meng-Kun Liu, 2020. "Wind Farm Fault Detection by Monitoring Wind Speed in the Wake Region," Energies, MDPI, vol. 13(24), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:4:d:10.1007_s10845-020-01712-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.