IDEAS home Printed from https://ideas.repec.org/a/spr/elmark/v32y2022i1d10.1007_s12525-021-00514-y.html
   My bibliography  Save this article

Robots, artificial intelligence, and service automation (RAISA) in hospitality: sentiment analysis of YouTube streaming data

Author

Listed:
  • Taekyung Kim

    (Kwangwoon University)

  • Hwirim Jo

    (Kyung Hee University)

  • Yerin Yhee

    (Kyung Hee University)

  • Chulmo Koo

    (Kyung Hee University)

Abstract

Humans in hospitality areas are being replaced by robot concierges, delivery robots, chatbots, and information assistants through a variety of devices, for example, mobile apps and self-service check-in/check-out machines. Powered by artificial intelligence (AI) algorithms, big data, mobile Internet and internet-of-things technologies, inventions supporting a sustainable shift to social robotics have recently been growing exponentially. Despite this unidirectional movement, there has been a lack of effort to monitor customer responses regarding specific situations in a timely manner. In this study, we examine YouTube, an online streaming video website, to uncover what factors affect attitudes towards RAISA (Robot, AI, and Service Automation) applications in the hospitality industry. The findings show that the sentiment of the content of video narration and physical interaction influence potential customer attitudes toward RAISA services in hospitality. This study provides insights about how online buzz can offer an initial reference for potential customers to deal with the uncertainty of innovative services and provide practitioners with information about proper design guidelines for promoting RAISA applications to their businesses by grasping the trend of broad opinion in real time.

Suggested Citation

  • Taekyung Kim & Hwirim Jo & Yerin Yhee & Chulmo Koo, 2022. "Robots, artificial intelligence, and service automation (RAISA) in hospitality: sentiment analysis of YouTube streaming data," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 259-275, March.
  • Handle: RePEc:spr:elmark:v:32:y:2022:i:1:d:10.1007_s12525-021-00514-y
    DOI: 10.1007/s12525-021-00514-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12525-021-00514-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12525-021-00514-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhenhui Jiang & Izak Benbasat, 2007. "Research Note---Investigating the Influence of the Functional Mechanisms of Online Product Presentations," Information Systems Research, INFORMS, vol. 18(4), pages 454-470, December.
    2. Fang, Bin & Ye, Qiang & Kucukusta, Deniz & Law, Rob, 2016. "Analysis of the perceived value of online tourism reviews: Influence of readability and reviewer characteristics," Tourism Management, Elsevier, vol. 52(C), pages 498-506.
    3. Shapiro, Adam Hale & Sudhof, Moritz & Wilson, Daniel J., 2022. "Measuring news sentiment," Journal of Econometrics, Elsevier, vol. 228(2), pages 221-243.
    4. Liu, Zhiwei & Park, Sangwon, 2015. "What makes a useful online review? Implication for travel product websites," Tourism Management, Elsevier, vol. 47(C), pages 140-151.
    5. Daniel Belanche & Luis V. Casaló & Carlos Flavián, 2021. "Frontline robots in tourism and hospitality: service enhancement or cost reduction?," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 477-492, September.
    6. Koo, Chulmo & Wati, Yulia & Jung, Jason J., 2011. "Examination of how social aspects moderate the relationship between task characteristics and usage of social communication technologies (SCTs) in organizations," International Journal of Information Management, Elsevier, vol. 31(5), pages 445-459.
    7. Reis, João & Melão, Nuno & Salvadorinho, Juliana & Soares, Bárbara & Rosete, Ana, 2020. "Service robots in the hospitality industry: The case of Henn-na hotel, Japan," Technology in Society, Elsevier, vol. 63(C).
    8. Papathanassis Alexis, 2017. "R-Tourism: Introducing the Potential Impact of Robotics and Service Automation in Tourism," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(1), pages 211-216, June.
    9. Richard L. Daft & Robert H. Lengel, 1986. "Organizational Information Requirements, Media Richness and Structural Design," Management Science, INFORMS, vol. 32(5), pages 554-571, May.
    10. Hema Yoganarasimhan, 2012. "Impact of social network structure on content propagation: A study using YouTube data," Quantitative Marketing and Economics (QME), Springer, vol. 10(1), pages 111-150, March.
    11. Tseng, Chi-Hsing & Wei, Li-Fun, 2020. "The efficiency of mobile media richness across different stages of online consumer behavior," International Journal of Information Management, Elsevier, vol. 50(C), pages 353-364.
    12. Alan R. Dennis & Susan T. Kinney, 1998. "Testing Media Richness Theory in the New Media: The Effects of Cues, Feedback, and Task Equivocality," Information Systems Research, INFORMS, vol. 9(3), pages 256-274, September.
    13. Assumpció Huertas & María Isabel Míguez-González & Natàlia Lozano-Monterrubio, 2017. "YouTube usage by Spanish tourist destinations as a tool to communicate their identities and brands," Journal of Brand Management, Palgrave Macmillan, vol. 24(3), pages 211-229, May.
    14. Sparks, Beverley A. & Browning, Victoria, 2011. "The impact of online reviews on hotel booking intentions and perception of trust," Tourism Management, Elsevier, vol. 32(6), pages 1310-1323.
    15. Yufeng Sun & Fengbao Yang & Xiaoxia Wang & Hongsong Dong, 2021. "Automatic Generation of the Draft Procuratorial Suggestions Based on an Extractive Summarization Method: BERTSLCA," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, June.
    16. Chulmo Koo & Zheng Xiang & Ulrike Gretzel & Marianna Sigala, 2021. "Artificial intelligence (AI) and robotics in travel, hospitality and leisure," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 473-476, September.
    17. Jin Woo Moon & Sung Kwon Jung & Yong Oh Lee & Sangsun Choi, 2015. "Prediction Performance of an Artificial Neural Network Model for the Amount of Cooling Energy Consumption in Hotel Rooms," Energies, MDPI, vol. 8(8), pages 1-18, August.
    18. Mangold, W. Glynn & Faulds, David J., 2009. "Social media: The new hybrid element of the promotion mix," Business Horizons, Elsevier, vol. 52(4), pages 357-365, July.
    19. Hyun S. Shin & Dominique M. Hanssens & Kyoo il Kim, 2016. "The role of online buzz for leader versus challenger brands: the case of the MP3 player market," Electronic Commerce Research, Springer, vol. 16(4), pages 503-528, December.
    20. Sparks, Beverley A. & Perkins, Helen E. & Buckley, Ralf, 2013. "Online travel reviews as persuasive communication: The effects of content type, source, and certification logos on consumer behavior," Tourism Management, Elsevier, vol. 39(C), pages 1-9.
    21. Park, Sangwon & Nicolau, Juan L., 2015. "Asymmetric effects of online consumer reviews," Annals of Tourism Research, Elsevier, vol. 50(C), pages 67-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ram Narayan & Anita Gehlot & Rajesh Singh & Shaik Vaseem Akram & Neeraj Priyadarshi & Bhekisipho Twala, 2022. "Hospitality Feedback System 4.0: Digitalization of Feedback System with Integration of Industry 4.0 Enabling Technologies," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    2. Vanessa Ratten, 2024. "Artificial Intelligence, Digital Trends and Globalization: Future Research Trends," FIIB Business Review, , vol. 13(3), pages 286-293, May.
    3. Liu, Juan & Xu, Xing'an, 2023. "Humor type and service context shape AI service recovery," Annals of Tourism Research, Elsevier, vol. 103(C).
    4. Akbari, Morteza & Foroudi, Pantea & Zaman Fashami, Rahime & Mahavarpour, Nasrin & Khodayari, Maryam, 2022. "Let us talk about something: The evolution of e-WOM from the past to the future," Journal of Business Research, Elsevier, vol. 149(C), pages 663-689.
    5. Rainer Alt, 2022. "Electronic Markets on platform dualities," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 1-10, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babajide Abubakr Muritala & Maria-Victoria Sánchez-Rebull & Ana-Beatriz Hernández-Lara, 2020. "A Bibliometric Analysis of Online Reviews Research in Tourism and Hospitality," Sustainability, MDPI, vol. 12(23), pages 1-18, November.
    2. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Grenoble Ecole de Management (Post-Print) halshs-01923243, HAL.
    3. Sunyoung Hlee & Hanna Lee & Chulmo Koo, 2018. "Hospitality and Tourism Online Review Research: A Systematic Analysis and Heuristic-Systematic Model," Sustainability, MDPI, vol. 10(4), pages 1-27, April.
    4. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Post-Print halshs-01923243, HAL.
    5. Xiang, Zheng & Du, Qianzhou & Ma, Yufeng & Fan, Weiguo, 2017. "A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism," Tourism Management, Elsevier, vol. 58(C), pages 51-65.
    6. Book, Laura A. & Tanford, Sarah & Chang, Wen, 2018. "Customer reviews are not always informative: The impact of effortful versus heuristic processing," Journal of Retailing and Consumer Services, Elsevier, vol. 41(C), pages 272-280.
    7. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    8. Pera, Rebecca & Viglia, Giampaolo & Grazzini, Laura & Dalli, Daniele, 2019. "When empathy prevents negative reviewing behavior," Annals of Tourism Research, Elsevier, vol. 75(C), pages 265-278.
    9. Chen, Feier & Liu, Stephanie Q. & Mattila, Anna S., 2020. "Bragging and humblebragging in online reviews," Annals of Tourism Research, Elsevier, vol. 80(C).
    10. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
    11. Oun-Joung Park & Jong-hyun Ryu, 2019. "Cognitive fit effects of online reviews on tourists’ information search," Information Technology & Tourism, Springer, vol. 21(3), pages 313-335, September.
    12. Arenas-Márquez, F.J. & Martínez-Torres, M.R. & Toral, S.L., 2021. "How can trustworthy influencers be identified in electronic word-of-mouth communities?," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    13. Filieri, Raffaele & Lin, Zhibin & Pino, Giovanni & Alguezaui, Salma & Inversini, Alessandro, 2021. "The role of visual cues in eWOM on consumers’ behavioral intention and decisions," Journal of Business Research, Elsevier, vol. 135(C), pages 663-675.
    14. Yi Luo & Xiaowei Xu, 2019. "Predicting the Helpfulness of Online Restaurant Reviews Using Different Machine Learning Algorithms: A Case Study of Yelp," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    15. Colmekcioglu, Nazan & Marvi, Reza & Foroudi, Pantea & Okumus, Fevzi, 2022. "Generation, susceptibility, and response regarding negativity: An in-depth analysis on negative online reviews," Journal of Business Research, Elsevier, vol. 153(C), pages 235-250.
    16. Su-min Yu & Zhi-jiao Du & Xu-dong Lin & Han-yang Luo & Jian-qiang Wang, 2020. "A Stochastic Dominance-Based Approach for Hotel Selection under Probabilistic Linguistic Environment," Mathematics, MDPI, vol. 8(9), pages 1-25, September.
    17. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "What moderates the influence of extremely negative ratings? The role of review and reviewer characteristics," Grenoble Ecole de Management (Post-Print) halshs-01923196, HAL.
    18. Un-Kon Lee, 2022. "Tourism Using Virtual Reality: Media Richness and Information System Successes," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    19. Wu, Laurie & Shen, Han & Fan, Alei & Mattila, Anna S., 2017. "The impact of language style on consumers′ reactions to online reviews," Tourism Management, Elsevier, vol. 59(C), pages 590-596.
    20. Guo, Yue & Barnes, Stuart J. & Jia, Qiong, 2017. "Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation," Tourism Management, Elsevier, vol. 59(C), pages 467-483.

    More about this item

    Keywords

    Robot; Artificial intelligence; Sentiment analysis; YouTube; Streaming data; Hospitality;
    All these keywords.

    JEL classification:

    • L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism
    • Z30 - Other Special Topics - - Tourism Economics - - - General
    • Z32 - Other Special Topics - - Tourism Economics - - - Tourism and Development
    • Z38 - Other Special Topics - - Tourism Economics - - - Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elmark:v:32:y:2022:i:1:d:10.1007_s12525-021-00514-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.