IDEAS home Printed from https://ideas.repec.org/a/eee/jbrese/v154y2023ics0148296322008268.html
   My bibliography  Save this article

Differential effects of analytical versus emotional rhetorical style on review helpfulness

Author

Listed:
  • Moradi, Masoud
  • Dass, Mayukh
  • Kumar, Piyush

Abstract

This paper examines the interaction effect of analytical versus emotional rhetorical styles and overall ratings on the perceived helpfulness of product reviews on an e-commerce platform. Hypotheses derived from signaling theory regarding the nonlinear and interactive effects of these variables are tested using a zero-inflated negative binomial model with fixed effects. The results from the estimation of the model using a large sample of reviews from a hedonic and a utilitarian category suggest that analytical and emotional rhetorical devices have mutually opposing effects on helpfulness. While an analytical writing style increases the number of helpfulness votes a review receives, both positive and negative emotional tones reduce it. Further, readers perceive polarized ratings as more helpful, and an analytical style strengthens this effect while an emotional style weakens it. The results are consistent with signaling theory and suggest that an objective and analytical style serves as a strong signal about unobserved quality while an emotional style conflicts with the quality signal and reduces a review’s helpfulness.

Suggested Citation

  • Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:jbrese:v:154:y:2023:i:c:s0148296322008268
    DOI: 10.1016/j.jbusres.2022.113361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0148296322008268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbusres.2022.113361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan Zhang & Margarethe F. Wiersema, 2009. "Stock market reaction to CEO certification: the signaling role of CEO background," Strategic Management Journal, Wiley Blackwell, vol. 30(7), pages 693-710, July.
    2. Norbert Steigenberger & Hendrik Wilhelm, 2018. "Extending Signaling Theory to Rhetorical Signals: Evidence from Crowdfunding," Organization Science, INFORMS, vol. 29(3), pages 529-546, June.
    3. Sam Ransbotham & Nicholas H. Lurie & Hongju Liu, 2019. "Creation and Consumption of Mobile Word of Mouth: How Are Mobile Reviews Different?," Marketing Science, INFORMS, vol. 38(5), pages 773-792, September.
    4. Zhang, Jason Q. & Craciun, Georgiana & Shin, Dongwoo, 2010. "When does electronic word-of-mouth matter? A study of consumer product reviews," Journal of Business Research, Elsevier, vol. 63(12), pages 1336-1341, December.
    5. Wang, Fang & Karimi, Sahar, 2019. "This product works well (for me): The impact of first-person singular pronouns on online review helpfulness," Journal of Business Research, Elsevier, vol. 104(C), pages 283-294.
    6. Francesca Valsesia & Kristin Diehl, 2022. "Let Me Show You What I Did versus What I Have: Sharing Experiential versus Material Purchases Alters Authenticity and Liking of Social Media Users [How Extraverted Is Honey.bunny77@Hotmail.de? Infe," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 49(3), pages 430-449.
    7. Bria Dunham, 2011. "The Role for Signaling Theory and Receiver Psychology in Marketing," Springer Books, in: Gad Saad (ed.), Evolutionary Psychology in the Business Sciences, pages 225-256, Springer.
    8. (Kay) Byun, Kyung-ah & Ma, Minghui & Kim, Kevin & Kang, Taeghyun, 2021. "Buying a New Product with Inconsistent Product Reviews from Multiple Sources: The Role of Information Diagnosticity and Advertising," Journal of Interactive Marketing, Elsevier, vol. 55(C), pages 81-103.
    9. Yoon-Joo Park, 2018. "Predicting the Helpfulness of Online Customer Reviews across Different Product Types," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    10. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Grenoble Ecole de Management (Post-Print) halshs-01923243, HAL.
    11. Zhenhui Jiang & Izak Benbasat, 2007. "Research Note---Investigating the Influence of the Functional Mechanisms of Online Product Presentations," Information Systems Research, INFORMS, vol. 18(4), pages 454-470, December.
    12. Meek, Stephanie & Wilk, Violetta & Lambert, Claire, 2021. "A big data exploration of the informational and normative influences on the helpfulness of online restaurant reviews," Journal of Business Research, Elsevier, vol. 125(C), pages 354-367.
    13. Srivastava, Vartika & Kalro, Arti D., 2019. "Enhancing the Helpfulness of Online Consumer Reviews: The Role of Latent (Content) Factors," Journal of Interactive Marketing, Elsevier, vol. 48(C), pages 33-50.
    14. Cheng, Yi-Hsiu & Ho, Hui-Yi, 2015. "Social influence's impact on reader perceptions of online reviews," Journal of Business Research, Elsevier, vol. 68(4), pages 883-887.
    15. Guha Majumder, Madhumita & Dutta Gupta, Sangita & Paul, Justin, 2022. "Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 147-164.
    16. Zhu, Yongmin & Liu, Miaomiao & Zeng, Xiaohua & Huang, Pei, 2020. "The effects of prior reviews on perceived review helpfulness: A configuration perspective," Journal of Business Research, Elsevier, vol. 110(C), pages 484-494.
    17. Michael Spence, 2002. "Signaling in Retrospect and the Informational Structure of Markets," American Economic Review, American Economic Association, vol. 92(3), pages 434-459, June.
    18. Bart de Langhe & Philip M. Fernbach & Donald R. Lichtenstein, 2016. "Navigating by the Stars: Investigating the Actual and Perceived Validity of Online User Ratings," Journal of Consumer Research, Oxford University Press, vol. 42(6), pages 817-833.
    19. Abhishek Tandon & Aakash Aakash & Anu G. Aggarwal & P. K. Kapur, 2021. "Analyzing the impact of review recency on helpfulness through econometric modeling," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 104-111, February.
    20. Christopher P. Furner & Robert A. Zinko, 2017. "The influence of information overload on the development of trust and purchase intention based on online product reviews in a mobile vs. web environment: an empirical investigation," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(3), pages 211-224, August.
    21. Yanli Jia & Ivy L.B. Liu, 2018. "Do consumers always follow “useful” reviews? The interaction effect of review valence and review usefulness on consumers' purchase decisions," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(11), pages 1304-1317, November.
    22. Monic Sun, 2012. "How Does the Variance of Product Ratings Matter?," Management Science, INFORMS, vol. 58(4), pages 696-707, April.
    23. Eroglu, Sevgin A. & Machleit, Karen A. & Davis, Lenita M., 2001. "Atmospheric qualities of online retailing: A conceptual model and implications," Journal of Business Research, Elsevier, vol. 54(2), pages 177-184, November.
    24. Ravid, S. Abraham & Sarig, Oded H., 1991. "Financial Signalling by Committing to Cash Outflows," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(2), pages 165-180, June.
    25. Gerrit K.C. Ahlers & Douglas Cumming & Christina Günther & Denis Schweizer, 2015. "Signaling in Equity Crowdfunding," Entrepreneurship Theory and Practice, , vol. 39(4), pages 955-980, July.
    26. Huang, Guanxiong & Liang, Hai, 2021. "Uncovering the effects of textual features on trustworthiness of online consumer reviews: A computational-experimental approach," Journal of Business Research, Elsevier, vol. 126(C), pages 1-11.
    27. Stremersch, Stefan & Camacho, Nuno & Vanneste, Sofie & Verniers, Isabel, 2015. "Unraveling scientific impact: Citation types in marketing journals," International Journal of Research in Marketing, Elsevier, vol. 32(1), pages 64-77.
    28. Liu, Zhiwei & Park, Sangwon, 2015. "What makes a useful online review? Implication for travel product websites," Tourism Management, Elsevier, vol. 47(C), pages 140-151.
    29. Sparks, Beverley A. & Browning, Victoria, 2011. "The impact of online reviews on hotel booking intentions and perception of trust," Tourism Management, Elsevier, vol. 32(6), pages 1310-1323.
    30. Ismagilova, Elvira & Dwivedi, Yogesh K. & Slade, Emma, 2020. "Perceived helpfulness of eWOM: Emotions, fairness and rationality," Journal of Retailing and Consumer Services, Elsevier, vol. 53(C).
    31. Anthony D. Miyazaki & Dhruv Grewal & Ronald C. Goodstein, 2005. "The Effect of Multiple Extrinsic Cues on Quality Perceptions: A Matter of Consistency," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 32(1), pages 146-153, June.
    32. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    33. Wang, Zheng & Wang, Lun & Ji, Ying & Zuo, Lulu & Qu, Shaojian, 2022. "A novel data-driven weighted sentiment analysis based on information entropy for perceived satisfaction," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    34. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    35. Hengchen Dai & Cindy Chan & Cassie Mogilner & Darren W. Dahl & Margaret C. Campbell & Cait Lamberton, 2020. "People Rely Less on Consumer Reviews for Experiential than Material Purchases [The Role of (Dis)Similarity in (Mis)Predicting Others’ Preferences]," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 46(6), pages 1052-1075.
    36. John, Kose & Lang, Larry H P, 1991. "Insider Trading around Dividend Announcements: Theory and Evidence," Journal of Finance, American Finance Association, vol. 46(4), pages 1361-1389, September.
    37. M. Huang & A. D. Pape, 2020. "The Impact of Online Consumer Reviews on Online Sales: The Case-Based Decision Theory Approach," Journal of Consumer Policy, Springer, vol. 43(3), pages 463-490, September.
    38. Ganesh Iyer & V. Padmanabhan, 2006. "—Internet-Based Service Institutions," Marketing Science, INFORMS, vol. 25(6), pages 598-600, 11-12.
    39. Dezhi Yin & Sabyasachi Mitra & Han Zhang, 2016. "Research Note—When Do Consumers Value Positive vs. Negative Reviews? An Empirical Investigation of Confirmation Bias in Online Word of Mouth," Information Systems Research, INFORMS, vol. 27(1), pages 131-144, March.
    40. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Post-Print halshs-01923243, HAL.
    41. Filieri, Raffaele, 2015. "What makes online reviews helpful? A diagnosticity-adoption framework to explain informational and normative influences in e-WOM," Journal of Business Research, Elsevier, vol. 68(6), pages 1261-1270.
    42. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Post-Print hal-03511272, HAL.
    43. Wm. Gerard Sanders & Steven Boivie, 2004. "Sorting things out: valuation of new firms in uncertain markets," Strategic Management Journal, Wiley Blackwell, vol. 25(2), pages 167-186, February.
    44. Kate MacKrill & Connor Silvester & James W. Pennebaker & Keith J. Petrie, 2021. "What makes an idea worth spreading? Language markers of popularity in TED talks by academics and other speakers," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(8), pages 1028-1038, August.
    45. Pan, Yue & Zhang, Jason Q., 2011. "Born Unequal: A Study of the Helpfulness of User-Generated Product Reviews," Journal of Retailing, Elsevier, vol. 87(4), pages 598-612.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raoofpanah, Iman & Zamudio, César & Groening, Christopher, 2023. "Review reader segmentation based on the heterogeneous impacts of review and reviewer attributes on review helpfulness: A study involving ZIP code data," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Feng & Yunqiang Yin & Dujuan Wang & Lalitha Dhamotharan & Joshua Ignatius & Ajay Kumar, 2023. "Diabetic patient review helpfulness: unpacking online drug treatment reviews by text analytics and design science approach," Annals of Operations Research, Springer, vol. 328(1), pages 387-418, September.
    2. Raoofpanah, Iman & Zamudio, César & Groening, Christopher, 2023. "Review reader segmentation based on the heterogeneous impacts of review and reviewer attributes on review helpfulness: A study involving ZIP code data," Journal of Retailing and Consumer Services, Elsevier, vol. 72(C).
    3. Lutz, Bernhard & Pröllochs, Nicolas & Neumann, Dirk, 2022. "Are longer reviews always more helpful? Disentangling the interplay between review length and line of argumentation," Journal of Business Research, Elsevier, vol. 144(C), pages 888-901.
    4. Meek, Stephanie & Wilk, Violetta & Lambert, Claire, 2021. "A big data exploration of the informational and normative influences on the helpfulness of online restaurant reviews," Journal of Business Research, Elsevier, vol. 125(C), pages 354-367.
    5. Zheng, Lili, 2021. "The classification of online consumer reviews: A systematic literature review and integrative framework," Journal of Business Research, Elsevier, vol. 135(C), pages 226-251.
    6. Baidyanath Biswas & Pooja Sengupta & Boudhayan Ganguly, 2022. "Your reviews or mine? Exploring the determinants of “perceived helpfulness” of online reviews: a cross-cultural study," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1083-1102, September.
    7. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    8. Filieri, Raffaele & Lin, Zhibin & Pino, Giovanni & Alguezaui, Salma & Inversini, Alessandro, 2021. "The role of visual cues in eWOM on consumers’ behavioral intention and decisions," Journal of Business Research, Elsevier, vol. 135(C), pages 663-675.
    9. Yi Luo & Xiaowei Xu, 2019. "Predicting the Helpfulness of Online Restaurant Reviews Using Different Machine Learning Algorithms: A Case Study of Yelp," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    10. Yi, Jisu & Oh, Yun Kyung, 2022. "The informational value of multi-attribute online consumer reviews: A text mining approach," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
    11. Cai, Xiaowei & Cebollada, Javier & Cortiñas, Mónica, 2023. "Impact of seller- and buyer-created content on product sales in the electronic commerce platform: The role of informativeness, readability, multimedia richness, and extreme valence," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    12. Guha Majumder, Madhumita & Dutta Gupta, Sangita & Paul, Justin, 2022. "Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis," Journal of Business Research, Elsevier, vol. 150(C), pages 147-164.
    13. Elvira Ismagilova & Emma L. Slade & Nripendra P. Rana & Yogesh K. Dwivedi, 2020. "The Effect of Electronic Word of Mouth Communications on Intention to Buy: A Meta-Analysis," Information Systems Frontiers, Springer, vol. 22(5), pages 1203-1226, October.
    14. Wang, Fang & Du, Zhao & Wang, Shan, 2023. "Information multidimensionality in online customer reviews," Journal of Business Research, Elsevier, vol. 159(C).
    15. Jin Li & Yulan Zhang & Jianping Li & Jiangze Du, 2023. "The Role of Sentiment Tendency in Affecting Review Helpfulness for Durable Products: Nonlinearity and Complementarity," Information Systems Frontiers, Springer, vol. 25(4), pages 1459-1477, August.
    16. Srivastava, Vartika & Kalro, Arti D., 2019. "Enhancing the Helpfulness of Online Consumer Reviews: The Role of Latent (Content) Factors," Journal of Interactive Marketing, Elsevier, vol. 48(C), pages 33-50.
    17. Kim, Taeyong & Hwang, Seungsoo & Kim, Minkyung, 2022. "Text analysis of online customer reviews for products in the FCB quadrants: Procedure, outcomes, and implications," Journal of Business Research, Elsevier, vol. 150(C), pages 676-689.
    18. Zhu, Yongmin & Liu, Miaomiao & Zeng, Xiaohua & Huang, Pei, 2020. "The effects of prior reviews on perceived review helpfulness: A configuration perspective," Journal of Business Research, Elsevier, vol. 110(C), pages 484-494.
    19. Raffaele Filieri & Elisabetta Raguseo & Claudio Vitari, 2018. "When are extreme ratings more helpful? Empirical evidence on the moderating effects of review characteristics and product type," Post-Print halshs-01923243, HAL.
    20. Lien Thi Kim Nguyen & Hao-Hsuan Chung & Kristine Velasquez Tuliao & Tom M. Y. Lin, 2020. "Using XGBoost and Skip-Gram Model to Predict Online Review Popularity," SAGE Open, , vol. 10(4), pages 21582440209, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbrese:v:154:y:2023:i:c:s0148296322008268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbusres .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.