IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006741.html
   My bibliography  Save this article

Spatial synchronization codes from coupled rate-phase neurons

Author

Listed:
  • Joseph D Monaco
  • Rose M De Guzman
  • Hugh T Blair
  • Kechen Zhang

Abstract

During spatial navigation, the frequency and timing of spikes from spatial neurons including place cells in hippocampus and grid cells in medial entorhinal cortex are temporally organized by continuous theta oscillations (6–11 Hz). The theta rhythm is regulated by subcortical structures including the medial septum, but it is unclear how spatial information from place cells may reciprocally organize subcortical theta-rhythmic activity. Here we recorded single-unit spiking from a constellation of subcortical and hippocampal sites to study spatial modulation of rhythmic spike timing in rats freely exploring an open environment. Our analysis revealed a novel class of neurons that we termed ‘phaser cells,’ characterized by a symmetric coupling between firing rate and spike theta-phase. Phaser cells encoded space by assigning distinct phases to allocentric isocontour levels of each cell’s spatial firing pattern. In our dataset, phaser cells were predominantly located in the lateral septum, but also the hippocampus, anteroventral thalamus, lateral hypothalamus, and nucleus accumbens. Unlike the unidirectional late-to-early phase precession of place cells, bidirectional phase modulation acted to return phaser cells to the same theta-phase along a given spatial isocontour, including cells that characteristically shifted to later phases at higher firing rates. Our dynamical models of intrinsic theta-bursting neurons demonstrated that experience-independent temporal coding mechanisms can qualitatively explain (1) the spatial rate-phase relationships of phaser cells and (2) the observed temporal segregation of phaser cells according to phase-shift direction. In open-field phaser cell simulations, competitive learning embedded phase-code entrainment maps into the weights of downstream targets, including path integration networks. Bayesian phase decoding revealed error correction capable of resetting path integration at subsecond timescales. Our findings suggest that phaser cells may instantiate a subcortical theta-rhythmic loop of spatial feedback. We outline a framework in which location-dependent synchrony reconciles internal idiothetic processes with the allothetic reference points of sensory experience.Author summary: Spatial cognition in mammals depends on position-related activity in the hippocampus and entorhinal cortex. Hippocampal place cells and entorhinal grid cells carry distinct maps as rodents move around. The grid cell map is thought to measure angles and distances from previous locations using path integration, a strategy of internally tracking self motion. However, path integration accumulates errors and must be ‘reset’ by external sensory cues. Allowing rats to explore an open arena, we recorded spiking neurons from areas interconnected with the entorhinal cortex, including subcortical structures and the hippocampus. Many of these subcortical regions help coordinate the hippocampal theta rhythm. Thus, we looked for spatial information in theta-rhythmic spiking and discovered ‘phaser cells’ in the lateral septum, which receives dense hippocampal input. Phaser cells encoded the rat’s position by shifting spike timing in symmetry with spatial changes in firing rate. We theorized that symmetric rate-phase coupling allows downstream networks to flexibly learn spatial patterns of synchrony. Using dynamical models and simulations, we showed that phaser cells may collectively transmit a fast, oscillatory reset signal. Our findings develop a new perspective on the temporal coding of space that may help disentangle competing models of path integration and cross-species differences in navigation.

Suggested Citation

  • Joseph D Monaco & Rose M De Guzman & Hugh T Blair & Kechen Zhang, 2019. "Spatial synchronization codes from coupled rate-phase neurons," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-42, January.
  • Handle: RePEc:plo:pcbi00:1006741
    DOI: 10.1371/journal.pcbi.1006741
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006741
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006741&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. R. Mehta & A. K. Lee & M. A. Wilson, 2002. "Role of experience and oscillations in transforming a rate code into a temporal code," Nature, Nature, vol. 417(6890), pages 741-746, June.
    2. Christopher D. Harvey & Forrest Collman & Daniel A. Dombeck & David W. Tank, 2009. "Intracellular dynamics of hippocampal place cells during virtual navigation," Nature, Nature, vol. 461(7266), pages 941-946, October.
    3. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    4. Eric A Zilli & Motoharu Yoshida & Babak Tahvildari & Lisa M Giocomo & Michael E Hasselmo, 2009. "Evaluation of the Oscillatory Interference Model of Grid Cell Firing through Analysis and Measured Period Variance of Some Biological Oscillators," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-16, November.
    5. Kenneth D. Harris & Darrell A. Henze & Hajime Hirase & Xavier Leinekugel & George Dragoi & Andras Czurkó & György Buzsáki, 2002. "Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells," Nature, Nature, vol. 417(6890), pages 738-741, June.
    6. Torkel Hafting & Marianne Fyhn & Tora Bonnevie & May-Britt Moser & Edvard I. Moser, 2008. "Hippocampus-independent phase precession in entorhinal grid cells," Nature, Nature, vol. 453(7199), pages 1248-1252, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eleonora Russo & Nadine Becker & Aleks P. F. Domanski & Timothy Howe & Kipp Freud & Daniel Durstewitz & Matthew W. Jones, 2024. "Integration of rate and phase codes by hippocampal cell-assemblies supports flexible encoding of spatiotemporal context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Praveen K Pilly & Stephen Grossberg, 2013. "Spiking Neurons in a Hierarchical Self-Organizing Map Model Can Learn to Develop Spatial and Temporal Properties of Entorhinal Grid Cells and Hippocampal Place Cells," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-22, April.
    3. Eric Reifenstein & Martin Stemmler & Andreas V M Herz & Richard Kempter & Susanne Schreiber, 2014. "Movement Dependence and Layer Specificity of Entorhinal Phase Precession in Two-Dimensional Environments," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    4. Florian Raudies & Michael E Hasselmo, 2012. "Modeling Boundary Vector Cell Firing Given Optic Flow as a Cue," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-17, June.
    5. Allen Cheung & David Ball & Michael Milford & Gordon Wyeth & Janet Wiles, 2012. "Maintaining a Cognitive Map in Darkness: The Need to Fuse Boundary Knowledge with Path Integration," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-22, August.
    6. Zhenrui Liao & Kevin C. Gonzalez & Deborah M. Li & Catalina M. Yang & Donald Holder & Natalie E. McClain & Guofeng Zhang & Stephen W. Evans & Mariya Chavarha & Jane Simko & Christopher D. Makinson & M, 2024. "Functional architecture of intracellular oscillations in hippocampal dendrites," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Davide Spalla & Alessandro Treves & Charlotte N. Boccara, 2022. "Angular and linear speed cells in the parahippocampal circuits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Xiaoyang Long & Daniel Bush & Bin Deng & Neil Burgess & Sheng-Jia Zhang, 2025. "Allocentric and egocentric spatial representations coexist in rodent medial entorhinal cortex," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    9. Krishna Choudhary & Sven Berberich & Thomas T. G. Hahn & James M. McFarland & Mayank R. Mehta, 2024. "Spontaneous persistent activity and inactivity in vivo reveals differential cortico-entorhinal functional connectivity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Tiziano D’Albis & Richard Kempter, 2017. "A single-cell spiking model for the origin of grid-cell patterns," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-41, October.
    11. Siavash Ahmadi & Takuya Sasaki & Marta Sabariego & Christian Leibold & Stefan Leutgeb & Jill K. Leutgeb, 2025. "Distinct roles of dentate gyrus and medial entorhinal cortex inputs for phase precession and temporal correlations in the hippocampal CA3 area," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    12. Cheng Wang & Heekyung Lee & Geeta Rao & James J. Knierim, 2024. "Multiplexing of temporal and spatial information in the lateral entorhinal cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Miles Wischnewski & Harry Tran & Zhihe Zhao & Sina Shirinpour & Zachary J. Haigh & Jonna Rotteveel & Nipun D. Perera & Ivan Alekseichuk & Jan Zimmermann & Alexander Opitz, 2024. "Induced neural phase precession through exogenous electric fields," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Jie Zheng & Mar Yebra & Andrea G. P. Schjetnan & Kramay Patel & Chaim N. Katz & Michael Kyzar & Clayton P. Mosher & Suneil K. Kalia & Jeffrey M. Chung & Chrystal M. Reed & Taufik A. Valiante & Adam N., 2024. "Theta phase precession supports memory formation and retrieval of naturalistic experience in humans," Nature Human Behaviour, Nature, vol. 8(12), pages 2423-2436, December.
    15. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    16. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    17. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Noga Mosheiff & Haggai Agmon & Avraham Moriel & Yoram Burak, 2017. "An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-19, June.
    19. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    20. Louis-Emmanuel Martinet & Denis Sheynikhovich & Karim Benchenane & Angelo Arleo, 2011. "Spatial Learning and Action Planning in a Prefrontal Cortical Network Model," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-21, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.