IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-35819-3.html
   My bibliography  Save this article

Entorhinal grid-like codes and time-locked network dynamics track others navigating through space

Author

Listed:
  • Isabella C. Wagner

    (Faculty of Psychology, University of Vienna
    Vienna Cognitive Science Hub, University of Vienna
    University of Vienna)

  • Luise P. Graichen

    (Faculty of Psychology, University of Vienna)

  • Boryana Todorova

    (Faculty of Psychology, University of Vienna)

  • Andre Lüttig

    (Faculty of Psychology, University of Vienna)

  • David B. Omer

    (The Hebrew University of Jerusalem, Givat Ram)

  • Matthias Stangl

    (Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles)

  • Claus Lamm

    (Faculty of Psychology, University of Vienna)

Abstract

Navigating through crowded, dynamically changing environments requires the ability to keep track of other individuals. Grid cells in the entorhinal cortex are a central component of self-related navigation but whether they also track others’ movement is unclear. Here, we propose that entorhinal grid-like codes make an essential contribution to socio-spatial navigation. Sixty human participants underwent functional magnetic resonance imaging (fMRI) while observing and re-tracing different paths of a demonstrator that navigated a virtual reality environment. Results revealed that grid-like codes in the entorhinal cortex tracked the other individual navigating through space. The activity of grid-like codes was time-locked to increases in co-activation and entorhinal-cortical connectivity that included the striatum, the hippocampus, parahippocampal and right posterior parietal cortices. Surprisingly, the grid-related effects during observation were stronger the worse participants performed when subsequently re-tracing the demonstrator’s paths. Our findings suggests that network dynamics time-locked to entorhinal grid-cell-related activity might serve to distribute information about the location of others throughout the brain.

Suggested Citation

  • Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35819-3
    DOI: 10.1038/s41467-023-35819-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-35819-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-35819-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miguel Remondes & Erin M. Schuman, 2004. "Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory," Nature, Nature, vol. 431(7009), pages 699-703, October.
    2. Nathaniel J. Killian & Michael J. Jutras & Elizabeth A. Buffalo, 2012. "A map of visual space in the primate entorhinal cortex," Nature, Nature, vol. 491(7426), pages 761-764, November.
    3. Christian F. Doeller & Caswell Barry & Neil Burgess, 2010. "Evidence for grid cells in a human memory network," Nature, Nature, vol. 463(7281), pages 657-661, February.
    4. Matthias Stangl & Uros Topalovic & Cory S. Inman & Sonja Hiller & Diane Villaroman & Zahra M. Aghajan & Leonardo Christov-Moore & Nicholas R. Hasulak & Vikram R. Rao & Casey H. Halpern & Dawn Eliashiv, 2021. "Boundary-anchored neural mechanisms of location-encoding for self and others," Nature, Nature, vol. 589(7842), pages 420-425, January.
    5. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    6. Jonathan Miller & Andrew J. Watrous & Melina Tsitsiklis & Sang Ah Lee & Sameer A. Sheth & Catherine A. Schevon & Elliot H. Smith & Michael R. Sperling & Ashwini Sharan & Ali Akbar Asadi-Pooya & Gregor, 2018. "Lateralized hippocampal oscillations underlie distinct aspects of human spatial memory and navigation," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    7. Marianne Fyhn & Torkel Hafting & Alessandro Treves & May-Britt Moser & Edvard I. Moser, 2007. "Hippocampal remapping and grid realignment in entorhinal cortex," Nature, Nature, vol. 446(7132), pages 190-194, March.
    8. Russell Epstein & Nancy Kanwisher, 1998. "A cortical representation of the local visual environment," Nature, Nature, vol. 392(6676), pages 598-601, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Nitsch & Mona M. Garvert & Jacob L. S. Bellmund & Nicolas W. Schuck & Christian F. Doeller, 2024. "Grid-like entorhinal representation of an abstract value space during prospective decision making," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Federica Sigismondi & Yangwen Xu & Mattia Silvestri & Roberto Bottini, 2024. "Altered grid-like coding in early blind people," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabrina L. L. Maoz & Matthias Stangl & Uros Topalovic & Daniel Batista & Sonja Hiller & Zahra M. Aghajan & Barbara Knowlton & John Stern & Jean-Philippe Langevin & Itzhak Fried & Dawn Eliashiv & Nanth, 2023. "Dynamic neural representations of memory and space during human ambulatory navigation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Sina Mackay & Thomas P. Reber & Marcel Bausch & Jan Boström & Christian E. Elger & Florian Mormann, 2024. "Concept and location neurons in the human brain provide the ‘what’ and ‘where’ in memory formation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Benjamin Dunn & Maria Mørreaunet & Yasser Roudi, 2015. "Correlations and Functional Connections in a Population of Grid Cells," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-21, February.
    4. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    5. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Federica Sigismondi & Yangwen Xu & Mattia Silvestri & Roberto Bottini, 2024. "Altered grid-like coding in early blind people," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Thibault Cholvin & Marlene Bartos, 2022. "Hemisphere-specific spatial representation by hippocampal granule cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Johnson Ying & Alexandra T. Keinath & Raphael Lavoie & Erika Vigneault & Salah El Mestikawy & Mark P. Brandon, 2022. "Disruption of the grid cell network in a mouse model of early Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Torsten Neher & Amir Hossein Azizi & Sen Cheng, 2017. "From grid cells to place cells with realistic field sizes," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-27, July.
    10. Will D Penny & Peter Zeidman & Neil Burgess, 2013. "Forward and Backward Inference in Spatial Cognition," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-22, December.
    11. Alexander Nitsch & Mona M. Garvert & Jacob L. S. Bellmund & Nicolas W. Schuck & Christian F. Doeller, 2024. "Grid-like entorhinal representation of an abstract value space during prospective decision making," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    12. Mengna Yao & Bincheng Wen & Mingpo Yang & Jiebin Guo & Haozhou Jiang & Chao Feng & Yilei Cao & Huiguang He & Le Chang, 2023. "High-dimensional topographic organization of visual features in the primate temporal lobe," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    13. Francis Kei Masuda & Emily A. Aery Jones & Yanjun Sun & Lisa M. Giocomo, 2023. "Ketamine evoked disruption of entorhinal and hippocampal spatial maps," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    14. Tiziano D’Albis & Richard Kempter, 2017. "A single-cell spiking model for the origin of grid-cell patterns," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-41, October.
    15. Axel Kammerer & Christian Leibold, 2014. "Hippocampal Remapping Is Constrained by Sparseness rather than Capacity," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-12, December.
    16. Laurenz Muessig & Fabio Ribeiro Rodrigues & Tale L. Bjerknes & Benjamin W. Towse & Caswell Barry & Neil Burgess & Edvard I. Moser & May-Britt Moser & Francesca Cacucci & Thomas J. Wills, 2024. "Environment geometry alters subiculum boundary vector cell receptive fields in adulthood and early development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Lajos Vágó & Balázs B Ujfalussy, 2018. "Robust and efficient coding with grid cells," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-28, January.
    18. Simone Viganò & Rena Bayramova & Christian F. Doeller & Roberto Bottini, 2023. "Mental search of concepts is supported by egocentric vector representations and restructured grid maps," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Erik Hermansen & David A. Klindt & Benjamin A. Dunn, 2024. "Uncovering 2-D toroidal representations in grid cell ensemble activity during 1-D behavior," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Marisa Nordt & Jesse Gomez & Vaidehi S. Natu & Alex A. Rezai & Dawn Finzi & Holly Kular & Kalanit Grill-Spector, 2023. "Longitudinal development of category representations in ventral temporal cortex predicts word and face recognition," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-35819-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.