IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-54699-9.html
   My bibliography  Save this article

Allocentric and egocentric spatial representations coexist in rodent medial entorhinal cortex

Author

Listed:
  • Xiaoyang Long

    (Army Medical University)

  • Daniel Bush

    (University College London)

  • Bin Deng

    (Army Medical University)

  • Neil Burgess

    (University College London
    University College London)

  • Sheng-Jia Zhang

    (Army Medical University)

Abstract

Successful navigation relies on reciprocal transformations between spatial representations in world-centered (allocentric) and self-centered (egocentric) frames of reference. The neural basis of allocentric spatial representations has been extensively investigated with grid, border, and head-direction cells in the medial entorhinal cortex (MEC) forming key components of a ‘cognitive map’. Recently, egocentric spatial representations have also been identified in several brain regions, but evidence for the coexistence of neurons encoding spatial variables in each reference frame within MEC is so far lacking. Here, we report that allocentric and egocentric spatial representations are both present in rodent MEC, with neurons in deeper layers representing the egocentric bearing and distance towards the geometric center and / or boundaries of an environment. These results demonstrate a unity of spatial coding that can guide efficient navigation and suggest that MEC may be one locus of interactions between egocentric and allocentric spatial representations in the mammalian brain.

Suggested Citation

  • Xiaoyang Long & Daniel Bush & Bin Deng & Neil Burgess & Sheng-Jia Zhang, 2025. "Allocentric and egocentric spatial representations coexist in rodent medial entorhinal cortex," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54699-9
    DOI: 10.1038/s41467-024-54699-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54699-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54699-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54699-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.