IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45898-5.html
   My bibliography  Save this article

Induced neural phase precession through exogenous electric fields

Author

Listed:
  • Miles Wischnewski

    (University of Minnesota)

  • Harry Tran

    (University of Minnesota)

  • Zhihe Zhao

    (University of Minnesota)

  • Sina Shirinpour

    (University of Minnesota)

  • Zachary J. Haigh

    (University of Minnesota)

  • Jonna Rotteveel

    (University of Minnesota)

  • Nipun D. Perera

    (University of Minnesota)

  • Ivan Alekseichuk

    (University of Minnesota)

  • Jan Zimmermann

    (University of Minnesota
    University of Minnesota
    University of Minnesota)

  • Alexander Opitz

    (University of Minnesota)

Abstract

The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.

Suggested Citation

  • Miles Wischnewski & Harry Tran & Zhihe Zhao & Sina Shirinpour & Zachary J. Haigh & Jonna Rotteveel & Nipun D. Perera & Ivan Alekseichuk & Jan Zimmermann & Alexander Opitz, 2024. "Induced neural phase precession through exogenous electric fields," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45898-5
    DOI: 10.1038/s41467-024-45898-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45898-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45898-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Berens, Philipp, 2009. "CircStat: A MATLAB Toolbox for Circular Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i10).
    2. Anli Liu & Mihály Vöröslakos & Greg Kronberg & Simon Henin & Matthew R. Krause & Yu Huang & Alexander Opitz & Ashesh Mehta & Christopher C. Pack & Bart Krekelberg & Antal Berényi & Lucas C. Parra & Lu, 2018. "Immediate neurophysiological effects of transcranial electrical stimulation," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Wei A. Huang & Iain M. Stitt & Ehsan Negahbani & D. J. Passey & Sangtae Ahn & Marshall Davey & Moritz Dannhauer & Thien T. Doan & Anna C. Hoover & Angel V. Peterchev & Susanne Radtke-Schuller & Flavio, 2021. "Transcranial alternating current stimulation entrains alpha oscillations by preferential phase synchronization of fast-spiking cortical neurons to stimulation waveform," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    4. Leila Reddy & Matthew W. Self & Benedikt Zoefel & Marlène Poncet & Jessy K. Possel & Judith C. Peters & Johannes C. Baayen & Sander Idema & Rufin VanRullen & Pieter R. Roelfsema, 2021. "Theta-phase dependent neuronal coding during sequence learning in human single neurons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Boateng Asamoah & Ahmad Khatoun & Myles Mc Laughlin, 2019. "tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    6. Kenneth D. Harris & Darrell A. Henze & Hajime Hirase & Xavier Leinekugel & George Dragoi & Andras Czurkó & György Buzsáki, 2002. "Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells," Nature, Nature, vol. 417(6890), pages 738-741, June.
    7. Torkel Hafting & Marianne Fyhn & Tora Bonnevie & May-Britt Moser & Edvard I. Moser, 2008. "Hippocampus-independent phase precession in entorhinal grid cells," Nature, Nature, vol. 453(7199), pages 1248-1252, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tal Sharf & Tjitse Molen & Stella M. K. Glasauer & Elmer Guzman & Alessio P. Buccino & Gabriel Luna & Zhuowei Cheng & Morgane Audouard & Kamalini G. Ranasinghe & Kiwamu Kudo & Srikantan S. Nagarajan &, 2022. "Functional neuronal circuitry and oscillatory dynamics in human brain organoids," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Daniel Müller-Komorowska & Baris Kuru & Heinz Beck & Oliver Braganza, 2023. "Phase information is conserved in sparse, synchronous population-rate-codes via phase-to-rate recoding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Joshua M. Diamond & Julio I. Chapeton & Weizhen Xie & Samantha N. Jackson & Sara K. Inati & Kareem A. Zaghloul, 2024. "Focal seizures induce spatiotemporally organized spiking activity in the human cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Jennifer B Tennessen & Marla M Holt & Brianna M Wright & M Bradley Hanson & Candice K Emmons & Deborah A Giles & Jeffrey T Hogan & Sheila J Thornton & Volker B Deecke, 2023. "Divergent foraging strategies between populations of sympatric matrilineal killer whales," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(3), pages 373-386.
    6. Thomas Schreiner & Marit Petzka & Tobias Staudigl & Bernhard P. Staresina, 2023. "Respiration modulates sleep oscillations and memory reactivation in humans," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Thomas Schreiner & Elisabeth Kaufmann & Soheyl Noachtar & Jan-Hinnerk Mehrkens & Tobias Staudigl, 2022. "The human thalamus orchestrates neocortical oscillations during NREM sleep," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    9. Alireza Saeedi & Kun Wang & Ghazaleh Nikpourian & Andreas Bartels & Nikos K. Logothetis & Nelson K. Totah & Masataka Watanabe, 2024. "Brightness illusions drive a neuronal response in the primary visual cortex under top-down modulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    11. Thomas Schreiner & Benjamin J. Griffiths & Merve Kutlu & Christian Vollmar & Elisabeth Kaufmann & Stefanie Quach & Jan Remi & Soheyl Noachtar & Tobias Staudigl, 2024. "Spindle-locked ripples mediate memory reactivation during human NREM sleep," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    13. Alexis T Baria & Brian Maniscalco & Biyu J He, 2017. "Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-29, November.
    14. Matthijs J. Warrens & Bunga C. Pratiwi, 2016. "Kappa Coefficients for Circular Classifications," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 507-522, October.
    15. Lombard, F. & Hawkins, Douglas M. & Potgieter, Cornelis J., 2017. "Sequential rank CUSUM charts for angular data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 268-279.
    16. Masataka Sawayama & Shin'ya Nishida, 2018. "Material and shape perception based on two types of intensity gradient information," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-40, April.
    17. Aguiar-Conraria, Luis & Martins, Manuel M.F. & Soares, Maria Joana, 2018. "Estimating the Taylor rule in the time-frequency domain," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 122-137.
    18. Assaf Breska & Leon Y Deouell, 2017. "Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment," PLOS Biology, Public Library of Science, vol. 15(2), pages 1-30, February.
    19. Sunny Nigam & Russell Milton & Sorin Pojoga & Valentin Dragoi, 2023. "Adaptive coding across visual features during free-viewing and fixation conditions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Zhenrui Liao & Kevin C. Gonzalez & Deborah M. Li & Catalina M. Yang & Donald Holder & Natalie E. McClain & Guofeng Zhang & Stephen W. Evans & Mariya Chavarha & Jane Simko & Christopher D. Makinson & M, 2024. "Functional architecture of intracellular oscillations in hippocampal dendrites," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45898-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.