IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v8y2024i12d10.1038_s41562-024-01983-9.html
   My bibliography  Save this article

Theta phase precession supports memory formation and retrieval of naturalistic experience in humans

Author

Listed:
  • Jie Zheng

    (Cedars-Sinai Medical Center
    University of California, Davis
    University of California, Davis
    Harvard Medical School)

  • Mar Yebra

    (Cedars-Sinai Medical Center)

  • Andrea G. P. Schjetnan

    (University of Toronto)

  • Kramay Patel

    (University of Toronto)

  • Chaim N. Katz

    (University of Toronto)

  • Michael Kyzar

    (Cedars-Sinai Medical Center)

  • Clayton P. Mosher

    (Cedars-Sinai Medical Center)

  • Suneil K. Kalia

    (University of Toronto)

  • Jeffrey M. Chung

    (Cedars-Sinai Medical Center)

  • Chrystal M. Reed

    (Cedars-Sinai Medical Center)

  • Taufik A. Valiante

    (University of Toronto)

  • Adam N. Mamelak

    (Cedars-Sinai Medical Center)

  • Gabriel Kreiman

    (Harvard Medical School
    Harvard University)

  • Ueli Rutishauser

    (Cedars-Sinai Medical Center
    Cedars-Sinai Medical Center
    Cedars-Sinai Medical Center
    California Institute of Technology)

Abstract

Associating different aspects of experience with discrete events is critical for human memory. A potential mechanism for linking memory components is phase precession, during which neurons fire progressively earlier in time relative to theta oscillations. However, no direct link between phase precession and memory has been established. Here we recorded single-neuron activity and local field potentials in the human medial temporal lobe while participants (n = 22) encoded and retrieved memories of movie clips. Bouts of theta and phase precession occurred following cognitive boundaries during movie watching and following stimulus onsets during memory retrieval. Phase precession was dynamic, with different neurons exhibiting precession in different task periods. Phase precession strength provided information about memory encoding and retrieval success that was complementary with firing rates. These data provide direct neural evidence for a functional role of phase precession in human episodic memory.

Suggested Citation

  • Jie Zheng & Mar Yebra & Andrea G. P. Schjetnan & Kramay Patel & Chaim N. Katz & Michael Kyzar & Clayton P. Mosher & Suneil K. Kalia & Jeffrey M. Chung & Chrystal M. Reed & Taufik A. Valiante & Adam N., 2024. "Theta phase precession supports memory formation and retrieval of naturalistic experience in humans," Nature Human Behaviour, Nature, vol. 8(12), pages 2423-2436, December.
  • Handle: RePEc:nat:nathum:v:8:y:2024:i:12:d:10.1038_s41562-024-01983-9
    DOI: 10.1038/s41562-024-01983-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-024-01983-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-024-01983-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. R. Mehta & A. K. Lee & M. A. Wilson, 2002. "Role of experience and oscillations in transforming a rate code into a temporal code," Nature, Nature, vol. 417(6890), pages 741-746, June.
    2. John Huxter & Neil Burgess & John O'Keefe, 2003. "Independent rate and temporal coding in hippocampal pyramidal cells," Nature, Nature, vol. 425(6960), pages 828-832, October.
    3. Kenneth D. Harris & Darrell A. Henze & Hajime Hirase & Xavier Leinekugel & George Dragoi & Andras Czurkó & György Buzsáki, 2002. "Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells," Nature, Nature, vol. 417(6890), pages 738-741, June.
    4. Dmitriy Aronov & Rhino Nevers & David W. Tank, 2017. "Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit," Nature, Nature, vol. 543(7647), pages 719-722, March.
    5. Nathaniel J. Killian & Michael J. Jutras & Elizabeth A. Buffalo, 2012. "A map of visual space in the primate entorhinal cortex," Nature, Nature, vol. 491(7426), pages 761-764, November.
    6. Leila Reddy & Matthew W. Self & Benedikt Zoefel & Marlène Poncet & Jessy K. Possel & Judith C. Peters & Johannes C. Baayen & Sander Idema & Rufin VanRullen & Pieter R. Roelfsema, 2021. "Theta-phase dependent neuronal coding during sequence learning in human single neurons," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eleonora Russo & Nadine Becker & Aleks P. F. Domanski & Timothy Howe & Kipp Freud & Daniel Durstewitz & Matthew W. Jones, 2024. "Integration of rate and phase codes by hippocampal cell-assemblies supports flexible encoding of spatiotemporal context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Zhenrui Liao & Kevin C. Gonzalez & Deborah M. Li & Catalina M. Yang & Donald Holder & Natalie E. McClain & Guofeng Zhang & Stephen W. Evans & Mariya Chavarha & Jane Simko & Christopher D. Makinson & M, 2024. "Functional architecture of intracellular oscillations in hippocampal dendrites," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Louis Kang & Taro Toyoizumi, 2024. "Distinguishing examples while building concepts in hippocampal and artificial networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Sara Mahallati & James C Bezdek & Milos R Popovic & Taufik A Valiante, 2019. "Cluster tendency assessment in neuronal spike data," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-29, November.
    5. Joseph D Monaco & Rose M De Guzman & Hugh T Blair & Kechen Zhang, 2019. "Spatial synchronization codes from coupled rate-phase neurons," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-42, January.
    6. Praveen K Pilly & Stephen Grossberg, 2013. "Spiking Neurons in a Hierarchical Self-Organizing Map Model Can Learn to Develop Spatial and Temporal Properties of Entorhinal Grid Cells and Hippocampal Place Cells," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-22, April.
    7. Eric Reifenstein & Martin Stemmler & Andreas V M Herz & Richard Kempter & Susanne Schreiber, 2014. "Movement Dependence and Layer Specificity of Entorhinal Phase Precession in Two-Dimensional Environments," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    8. Miles Wischnewski & Harry Tran & Zhihe Zhao & Sina Shirinpour & Zachary J. Haigh & Jonna Rotteveel & Nipun D. Perera & Ivan Alekseichuk & Jan Zimmermann & Alexander Opitz, 2024. "Induced neural phase precession through exogenous electric fields," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    11. Dhanya Parameshwaran & Upinder S Bhalla, 2013. "Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    12. Adrienne I. Kinman & Derek N. Merryweather & Sarah R. Erwin & Regan E. Campbell & Kaitlin E. Sullivan & Larissa Kraus & Margarita Kapustina & Brianna N. Bristow & Mingjia Y. Zhang & Madeline W. Elder , 2025. "Atypical hippocampal excitatory neurons express and govern object memory," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
    13. Davide Spalla & Alessandro Treves & Charlotte N. Boccara, 2022. "Angular and linear speed cells in the parahippocampal circuits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Heather C. Ratigan & Seetha Krishnan & Shai Smith & Mark E. J. Sheffield, 2023. "A thalamic-hippocampal CA1 signal for contextual fear memory suppression, extinction, and discrimination," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Sina Mackay & Thomas P. Reber & Marcel Bausch & Jan Boström & Christian E. Elger & Florian Mormann, 2024. "Concept and location neurons in the human brain provide the ‘what’ and ‘where’ in memory formation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Albert M. Barth & Marta Jelitai & Maria Flora Vasarhelyi-Nagy & Viktor Varga, 2023. "Aversive stimulus-tuned responses in the CA1 of the dorsal hippocampus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    17. Gross, Eitan, 2015. "Classification error analysis in stereo vision," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 1-10.
    18. Matthieu Gilson & Tomoki Fukai, 2011. "Stability versus Neuronal Specialization for STDP: Long-Tail Weight Distributions Solve the Dilemma," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-18, October.
    19. Florian Eberhardt & Andreas V M Herz & Stefan Häusler, 2019. "Tuft dendrites of pyramidal neurons operate as feedback-modulated functional subunits," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-23, March.
    20. Daniel Müller-Komorowska & Baris Kuru & Heinz Beck & Oliver Braganza, 2023. "Phase information is conserved in sparse, synchronous population-rate-codes via phase-to-rate recoding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:8:y:2024:i:12:d:10.1038_s41562-024-01983-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.