IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51391-w.html
   My bibliography  Save this article

Egocentric neural representation of geometric vertex in the retrosplenial cortex

Author

Listed:
  • Kyerl Park

    (Seoul National University
    Korea University)

  • Yoonsoo Yeo

    (Seoul National University
    Korea University)

  • Kisung Shin

    (Korea University)

  • Jeehyun Kwag

    (Seoul National University)

Abstract

Egocentric neural representations of environmental features, such as edges and vertices, are important for constructing a geometrically detailed egocentric cognitive map for goal-directed navigation and episodic memory. While egocentric neural representations of edges like egocentric boundary/border cells exist, those that selectively represent vertices egocentrically are yet unknown. Here we report that granular retrosplenial cortex (RSC) neurons in male mice generate spatial receptive fields exclusively near the vertices of environmental geometries during free exploration, termed vertex cells. Their spatial receptive fields occurred at a specific orientation and distance relative to the heading direction of mice, indicating egocentric vector coding of vertex. Removing physical boundaries defining the environmental geometry abolished the egocentric vector coding of vertex, and goal-directed navigation strengthened the egocentric vector coding at the goal-located vertex. Our findings suggest that egocentric vector coding of vertex by granular RSC neurons helps construct an egocentric cognitive map that guides goal-directed navigation.

Suggested Citation

  • Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51391-w
    DOI: 10.1038/s41467-024-51391-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51391-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51391-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Øyvind Arne Høydal & Emilie Ranheim Skytøen & Sebastian Ola Andersson & May-Britt Moser & Edvard I. Moser, 2019. "Object-vector coding in the medial entorhinal cortex," Nature, Nature, vol. 568(7752), pages 400-404, April.
    2. Berens, Philipp, 2009. "CircStat: A MATLAB Toolbox for Circular Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i10).
    3. Johannes Friedrich & Pengcheng Zhou & Liam Paninski, 2017. "Fast online deconvolution of calcium imaging data," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-26, March.
    4. James R. Hinman & G. William Chapman & Michael E. Hasselmo, 2019. "Neuronal representation of environmental boundaries in egocentric coordinates," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    5. Yanjun Sun & Douglas A. Nitz & Xiangmin Xu & Lisa M. Giocomo, 2024. "Subicular neurons encode concave and convex geometries," Nature, Nature, vol. 627(8005), pages 821-829, March.
    6. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    7. Weilun Sun & Ilseob Choi & Stoyan Stoyanov & Oleg Senkov & Evgeni Ponimaskin & York Winter & Janelle M. P. Pakan & Alexander Dityatev, 2021. "Context value updating and multidimensional neuronal encoding in the retrosplenial cortex," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    8. Julija Krupic & Marius Bauza & Stephen Burton & Caswell Barry & John O’Keefe, 2015. "Grid cell symmetry is shaped by environmental geometry," Nature, Nature, vol. 518(7538), pages 232-235, February.
    9. Soyoun Kim & Dajung Jung & Sébastien Royer, 2020. "Place cell maps slowly develop via competitive learning and conjunctive coding in the dentate gyrus," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    10. Marianne Fyhn & Torkel Hafting & Alessandro Treves & May-Britt Moser & Edvard I. Moser, 2007. "Hippocampal remapping and grid realignment in entorhinal cortex," Nature, Nature, vol. 446(7132), pages 190-194, March.
    11. Maria Sol Fustiñana & Tobias Eichlisberger & Tewis Bouwmeester & Yael Bitterman & Andreas Lüthi, 2021. "State-dependent encoding of exploratory behaviour in the amygdala," Nature, Nature, vol. 592(7853), pages 267-271, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis M. Franco & Michael J. Goard, 2024. "Differential stability of task variable representations in retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Tiziano D’Albis & Richard Kempter, 2017. "A single-cell spiking model for the origin of grid-cell patterns," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-41, October.
    4. Laurenz Muessig & Fabio Ribeiro Rodrigues & Tale L. Bjerknes & Benjamin W. Towse & Caswell Barry & Neil Burgess & Edvard I. Moser & May-Britt Moser & Francesca Cacucci & Thomas J. Wills, 2024. "Environment geometry alters subiculum boundary vector cell receptive fields in adulthood and early development," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Lajos Vágó & Balázs B Ujfalussy, 2018. "Robust and efficient coding with grid cells," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-28, January.
    6. Simone Viganò & Rena Bayramova & Christian F. Doeller & Roberto Bottini, 2023. "Mental search of concepts is supported by egocentric vector representations and restructured grid maps," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    9. Qiming Shao & Ligu Chen & Xiaowan Li & Miao Li & Hui Cui & Xiaoyue Li & Xinran Zhao & Yuying Shi & Qiang Sun & Kaiyue Yan & Guangfu Wang, 2024. "A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Thibault Cholvin & Marlene Bartos, 2022. "Hemisphere-specific spatial representation by hippocampal granule cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Torsten Neher & Amir Hossein Azizi & Sen Cheng, 2017. "From grid cells to place cells with realistic field sizes," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-27, July.
    12. Ignacio Alonso & Irina Scheer & Mélanie Palacio-Manzano & Noémie Frézel-Jacob & Antoine Philippides & Mario Prsa, 2023. "Peripersonal encoding of forelimb proprioception in the mouse somatosensory cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Eric Reifenstein & Martin Stemmler & Andreas V M Herz & Richard Kempter & Susanne Schreiber, 2014. "Movement Dependence and Layer Specificity of Entorhinal Phase Precession in Two-Dimensional Environments," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    14. Francis Kei Masuda & Emily A. Aery Jones & Yanjun Sun & Lisa M. Giocomo, 2023. "Ketamine evoked disruption of entorhinal and hippocampal spatial maps," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    15. Soraya L. S. Dunn & Stephen M. Town & Jennifer K. Bizley & Daniel Bendor, 2022. "Behaviourally modulated hippocampal theta oscillations in the ferret persist during both locomotion and immobility," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    16. Axel Kammerer & Christian Leibold, 2014. "Hippocampal Remapping Is Constrained by Sparseness rather than Capacity," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-12, December.
    17. Simon N Weber & Henning Sprekeler, 2019. "A local measure of symmetry and orientation for individual spikes of grid cells," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-21, February.
    18. Xiang Zhang & Qichen Cao & Kai Gao & Cong Chen & Sihui Cheng & Ang Li & Yuqian Zhou & Ruojin Liu & Jun Hao & Emilio Kropff & Chenglin Miao, 2024. "Multiplexed representation of others in the hippocampal CA1 subfield of female mice," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Benjamin Dunn & Maria Mørreaunet & Yasser Roudi, 2015. "Correlations and Functional Connections in a Population of Grid Cells," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-21, February.
    20. Maryam Najafian Jazi & Adrian Tymorek & Ting-Yun Yen & Felix Jose Kavarayil & Moritz Stingl & Sherman Richard Chau & Benay Baskurt & Celia García Vilela & Kevin Allen, 2023. "Hippocampal firing fields anchored to a moving object predict homing direction during path-integration-based behavior," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51391-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.