IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002651.html
   My bibliography  Save this article

Maintaining a Cognitive Map in Darkness: The Need to Fuse Boundary Knowledge with Path Integration

Author

Listed:
  • Allen Cheung
  • David Ball
  • Michael Milford
  • Gordon Wyeth
  • Janet Wiles

Abstract

Spatial navigation requires the processing of complex, disparate and often ambiguous sensory data. The neurocomputations underpinning this vital ability remain poorly understood. Controversy remains as to whether multimodal sensory information must be combined into a unified representation, consistent with Tolman's “cognitive map”, or whether differential activation of independent navigation modules suffice to explain observed navigation behaviour. Here we demonstrate that key neural correlates of spatial navigation in darkness cannot be explained if the path integration system acted independently of boundary (landmark) information. In vivo recordings demonstrate that the rodent head direction (HD) system becomes unstable within three minutes without vision. In contrast, rodents maintain stable place fields and grid fields for over half an hour without vision. Using a simple HD error model, we show analytically that idiothetic path integration (iPI) alone cannot be used to maintain any stable place representation beyond two to three minutes. We then use a measure of place stability based on information theoretic principles to prove that featureless boundaries alone cannot be used to improve localization above chance level. Having shown that neither iPI nor boundaries alone are sufficient, we then address the question of whether their combination is sufficient and – we conjecture – necessary to maintain place stability for prolonged periods without vision. We addressed this question in simulations and robot experiments using a navigation model comprising of a particle filter and boundary map. The model replicates published experimental results on place field and grid field stability without vision, and makes testable predictions including place field splitting and grid field rescaling if the true arena geometry differs from the acquired boundary map. We discuss our findings in light of current theories of animal navigation and neuronal computation, and elaborate on their implications and significance for the design, analysis and interpretation of experiments. Author Summary: Do animals need “cognitive maps“? One of the main difficulties in answering this question is finding a definitive scenario where having and not having a “cognitive map“ result in measurably different outcomes. Many key predictions made by models involving some sort of “cognitive map“ can also be replicated by models without a “cognitive map“. Here we consider published data on rodents navigating in darkness inside homogeneous arenas. The head direction system becomes unstable within three minutes in darkness, yet place and grid cells have been reported to fire in the same locations for thirty minutes or longer. We show firstly that it is theoretically implausible for path integration alone to maintain a stable positional representation beyond three minutes, given a drifting head direction system in darkness. Secondly, we prove that even assuming perfect boundary knowledge is insufficient to maintain a stable positional representation. Finally, we show in simulated and real arenas that a nearoptimal combination of path integration and boundary representation is sufficient to produce stable positional representations in darkness consistent with published data. The necessity for fusing path integration and landmark information for accurate localization in darkness is both consistent with, and motivates the existence of, “cognitive maps.“

Suggested Citation

  • Allen Cheung & David Ball & Michael Milford & Gordon Wyeth & Janet Wiles, 2012. "Maintaining a Cognitive Map in Darkness: The Need to Fuse Boundary Knowledge with Path Integration," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-22, August.
  • Handle: RePEc:plo:pcbi00:1002651
    DOI: 10.1371/journal.pcbi.1002651
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002651
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002651&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    2. Eric A Zilli & Motoharu Yoshida & Babak Tahvildari & Lisa M Giocomo & Michael E Hasselmo, 2009. "Evaluation of the Oscillatory Interference Model of Grid Cell Firing through Analysis and Measured Period Variance of Some Biological Oscillators," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-16, November.
    3. Marianne Fyhn & Torkel Hafting & Alessandro Treves & May-Britt Moser & Edvard I. Moser, 2007. "Hippocampal remapping and grid realignment in entorhinal cortex," Nature, Nature, vol. 446(7132), pages 190-194, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Torsten Neher & Amir Hossein Azizi & Sen Cheng, 2017. "From grid cells to place cells with realistic field sizes," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-27, July.
    5. Eric Reifenstein & Martin Stemmler & Andreas V M Herz & Richard Kempter & Susanne Schreiber, 2014. "Movement Dependence and Layer Specificity of Entorhinal Phase Precession in Two-Dimensional Environments," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.
    6. Francis Kei Masuda & Emily A. Aery Jones & Yanjun Sun & Lisa M. Giocomo, 2023. "Ketamine evoked disruption of entorhinal and hippocampal spatial maps," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Tiziano D’Albis & Richard Kempter, 2017. "A single-cell spiking model for the origin of grid-cell patterns," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-41, October.
    8. Yue-Qing Zhou & Vyash Puliyadi & Xiaojing Chen & Joonhee Leo Lee & Lan-Yuan Zhang & James J. Knierim, 2024. "Vector coding and place coding in hippocampus share a common directional signal," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Axel Kammerer & Christian Leibold, 2014. "Hippocampal Remapping Is Constrained by Sparseness rather than Capacity," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-12, December.
    10. Joseph D Monaco & Rose M De Guzman & Hugh T Blair & Kechen Zhang, 2019. "Spatial synchronization codes from coupled rate-phase neurons," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-42, January.
    11. Benjamin Dunn & Maria Mørreaunet & Yasser Roudi, 2015. "Correlations and Functional Connections in a Population of Grid Cells," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-21, February.
    12. Lajos Vágó & Balázs B Ujfalussy, 2018. "Robust and efficient coding with grid cells," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-28, January.
    13. Sandro Romani & Misha Tsodyks, 2010. "Continuous Attractors with Morphed/Correlated Maps," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-19, August.
    14. Noga Mosheiff & Haggai Agmon & Avraham Moriel & Yoram Burak, 2017. "An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-19, June.
    15. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    16. Louis-Emmanuel Martinet & Denis Sheynikhovich & Karim Benchenane & Angelo Arleo, 2011. "Spatial Learning and Action Planning in a Prefrontal Cortical Network Model," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-21, May.
    17. Florian Raudies & Michael E Hasselmo, 2012. "Modeling Boundary Vector Cell Firing Given Optic Flow as a Cue," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-17, June.
    18. Avgar, Tal & Deardon, Rob & Fryxell, John M., 2013. "An empirically parameterized individual based model of animal movement, perception, and memory," Ecological Modelling, Elsevier, vol. 251(C), pages 158-172.
    19. Sabrina L. L. Maoz & Matthias Stangl & Uros Topalovic & Daniel Batista & Sonja Hiller & Zahra M. Aghajan & Barbara Knowlton & John Stern & Jean-Philippe Langevin & Itzhak Fried & Dawn Eliashiv & Nanth, 2023. "Dynamic neural representations of memory and space during human ambulatory navigation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Qiming Shao & Ligu Chen & Xiaowan Li & Miao Li & Hui Cui & Xiaoyue Li & Xinran Zhao & Yuying Shi & Qiang Sun & Kaiyue Yan & Guangfu Wang, 2024. "A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.