IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000573.html
   My bibliography  Save this article

Evaluation of the Oscillatory Interference Model of Grid Cell Firing through Analysis and Measured Period Variance of Some Biological Oscillators

Author

Listed:
  • Eric A Zilli
  • Motoharu Yoshida
  • Babak Tahvildari
  • Lisa M Giocomo
  • Michael E Hasselmo

Abstract

Models of the hexagonally arrayed spatial activity pattern of grid cell firing in the literature generally fall into two main categories: continuous attractor models or oscillatory interference models. Burak and Fiete (2009, PLoS Comput Biol) recently examined noise in two continuous attractor models, but did not consider oscillatory interference models in detail. Here we analyze an oscillatory interference model to examine the effects of noise on its stability and spatial firing properties. We show analytically that the square of the drift in encoded position due to noise is proportional to time and inversely proportional to the number of oscillators. We also show there is a relatively fixed breakdown point, independent of many parameters of the model, past which noise overwhelms the spatial signal. Based on this result, we show that a pair of oscillators are expected to maintain a stable grid for approximately t = 5µ3/(4πσ)2 seconds where µ is the mean period of an oscillator in seconds and σ2 its variance in seconds2. We apply this criterion to recordings of individual persistent spiking neurons in postsubiculum (dorsal presubiculum) and layers III and V of entorhinal cortex, to subthreshold membrane potential oscillation recordings in layer II stellate cells of medial entorhinal cortex and to values from the literature regarding medial septum theta bursting cells. All oscillators examined have expected stability times far below those seen in experimental recordings of grid cells, suggesting the examined biological oscillators are unfit as a substrate for current implementations of oscillatory interference models. However, oscillatory interference models can tolerate small amounts of noise, suggesting the utility of circuit level effects which might reduce oscillator variability. Further implications for grid cell models are discussed.Author Summary: For many animals, including rats, accurate spatial memory over relatively large areas is important in order to find food and shelter. Just as unique points in time can be efficiently represented by combinations of repeating elements like hours, days, and months, points in space can be represented as combinations of elements that repeat at different spatial scales. Just such a code has been identified in the brains of rats and it shows an intriguing triangular spacing of encoded locations. Two different explanations have been developed as to what general mechanism in the brain might be able to generate this unusual code. However, to date there is not conclusive experimental evidence indicating whether either of the two explanations is correct. Here we show in detail that one of the explanations, called oscillatory interference, has specific requirements regarding the amount of variability in the system that implements it. We then report data experimentally examining candidate systems to evaluate their levels of noise. The large amount of noise that we find presents a challenge to the currently suggested biological implementations of oscillatory interference, but it does not provide support for the alternative explanation.

Suggested Citation

  • Eric A Zilli & Motoharu Yoshida & Babak Tahvildari & Lisa M Giocomo & Michael E Hasselmo, 2009. "Evaluation of the Oscillatory Interference Model of Grid Cell Firing through Analysis and Measured Period Variance of Some Biological Oscillators," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-16, November.
  • Handle: RePEc:plo:pcbi00:1000573
    DOI: 10.1371/journal.pcbi.1000573
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000573
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000573&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Reifenstein & Martin Stemmler & Andreas V M Herz & Richard Kempter & Susanne Schreiber, 2014. "Movement Dependence and Layer Specificity of Entorhinal Phase Precession in Two-Dimensional Environments," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-11, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Noga Mosheiff & Haggai Agmon & Avraham Moriel & Yoram Burak, 2017. "An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-19, June.
    5. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    6. Louis-Emmanuel Martinet & Denis Sheynikhovich & Karim Benchenane & Angelo Arleo, 2011. "Spatial Learning and Action Planning in a Prefrontal Cortical Network Model," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-21, May.
    7. Florian Raudies & Michael E Hasselmo, 2012. "Modeling Boundary Vector Cell Firing Given Optic Flow as a Cue," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-17, June.
    8. Avgar, Tal & Deardon, Rob & Fryxell, John M., 2013. "An empirically parameterized individual based model of animal movement, perception, and memory," Ecological Modelling, Elsevier, vol. 251(C), pages 158-172.
    9. Sabrina L. L. Maoz & Matthias Stangl & Uros Topalovic & Daniel Batista & Sonja Hiller & Zahra M. Aghajan & Barbara Knowlton & John Stern & Jean-Philippe Langevin & Itzhak Fried & Dawn Eliashiv & Nanth, 2023. "Dynamic neural representations of memory and space during human ambulatory navigation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Qiming Shao & Ligu Chen & Xiaowan Li & Miao Li & Hui Cui & Xiaoyue Li & Xinran Zhao & Yuying Shi & Qiang Sun & Kaiyue Yan & Guangfu Wang, 2024. "A non-canonical visual cortical-entorhinal pathway contributes to spatial navigation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Fabian Kessler & Julia Frankenstein & Constantin A. Rothkopf, 2024. "Human navigation strategies and their errors result from dynamic interactions of spatial uncertainties," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    12. Alexander Thomas Keinath, 2016. "The Preferred Directions of Conjunctive Grid X Head Direction Cells in the Medial Entorhinal Cortex Are Periodically Organized," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-11, March.
    13. Toon Van de Maele & Bart Dhoedt & Tim Verbelen & Giovanni Pezzulo, 2024. "A hierarchical active inference model of spatial alternation tasks and the hippocampal-prefrontal circuit," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Federica Sigismondi & Yangwen Xu & Mattia Silvestri & Roberto Bottini, 2024. "Altered grid-like coding in early blind people," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Netto, Vinicius M. & Brigatti, Edgardo & Meirelles, João & Ribeiro, Fabiano L. & Pace, Bruno & Cacholas, Caio & Sanches, Patricia Mara, 2018. "Cities, from information to interaction," SocArXiv jgz5d, Center for Open Science.
    16. Davide Spalla & Alessandro Treves & Charlotte N. Boccara, 2022. "Angular and linear speed cells in the parahippocampal circuits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Thibault Cholvin & Marlene Bartos, 2022. "Hemisphere-specific spatial representation by hippocampal granule cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Johnson Ying & Alexandra T. Keinath & Raphael Lavoie & Erika Vigneault & Salah El Mestikawy & Mark P. Brandon, 2022. "Disruption of the grid cell network in a mouse model of early Alzheimer’s disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Torsten Neher & Amir Hossein Azizi & Sen Cheng, 2017. "From grid cells to place cells with realistic field sizes," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-27, July.
    20. Hristina Ivanova Zlatanova & Maria Todorova Georgieva-Kotetarova & Natalia Borisova Vilmosh & Ilin Kostadinov Kandilarov, 2022. "Evaluation of the Effect of Cariprazine on Memory and Cognition in Experimental Rodent Models," IJERPH, MDPI, vol. 19(22), pages 1-11, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.