IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v461y2009i7266d10.1038_nature08499.html
   My bibliography  Save this article

Intracellular dynamics of hippocampal place cells during virtual navigation

Author

Listed:
  • Christopher D. Harvey

    (Princeton Neuroscience Institute,
    Lewis-Sigler Institute for Integrative Genomics,
    Princeton University, Princeton, New Jersey 08544, USA)

  • Forrest Collman

    (Princeton Neuroscience Institute,
    Lewis-Sigler Institute for Integrative Genomics,
    Princeton University, Princeton, New Jersey 08544, USA)

  • Daniel A. Dombeck

    (Princeton Neuroscience Institute,
    Lewis-Sigler Institute for Integrative Genomics,
    Princeton University, Princeton, New Jersey 08544, USA)

  • David W. Tank

    (Princeton Neuroscience Institute,
    Lewis-Sigler Institute for Integrative Genomics,
    Princeton University, Princeton, New Jersey 08544, USA)

Abstract

Hippocampal place cells encode spatial information in rate and temporal codes. To examine the mechanisms underlying hippocampal coding, here we measured the intracellular dynamics of place cells by combining in vivo whole-cell recordings with a virtual-reality system. Head-restrained mice, running on a spherical treadmill, interacted with a computer-generated visual environment to perform spatial behaviours. Robust place-cell activity was present during movement along a virtual linear track. From whole-cell recordings, we identified three subthreshold signatures of place fields: an asymmetric ramp-like depolarization of the baseline membrane potential, an increase in the amplitude of intracellular theta oscillations, and a phase precession of the intracellular theta oscillation relative to the extracellularly recorded theta rhythm. These intracellular dynamics underlie the primary features of place-cell rate and temporal codes. The virtual-reality system developed here will enable new experimental approaches to study the neural circuits underlying navigation.

Suggested Citation

  • Christopher D. Harvey & Forrest Collman & Daniel A. Dombeck & David W. Tank, 2009. "Intracellular dynamics of hippocampal place cells during virtual navigation," Nature, Nature, vol. 461(7266), pages 941-946, October.
  • Handle: RePEc:nat:nature:v:461:y:2009:i:7266:d:10.1038_nature08499
    DOI: 10.1038/nature08499
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature08499
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature08499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Lowet & Krishnakanth Kondabolu & Samuel Zhou & Rebecca A. Mount & Yangyang Wang & Cara R. Ravasio & Xue Han, 2022. "Deep brain stimulation creates informational lesion through membrane depolarization in mouse hippocampus," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Jeffrey P Nguyen & Ashley N Linder & George S Plummer & Joshua W Shaevitz & Andrew M Leifer, 2017. "Automatically tracking neurons in a moving and deforming brain," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-19, May.
    3. Florian Raudies & Michael E Hasselmo, 2012. "Modeling Boundary Vector Cell Firing Given Optic Flow as a Cue," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-17, June.
    4. Brent Kevin Young & Jayden Nicole Brennan & Ping Wang & Ning Tian, 2018. "Virtual reality method to analyze visual recognition in mice," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-14, May.
    5. Samuel K. H. Sy & Danny C. W. Chan & Roy C. H. Chan & Jing Lyu & Zhongqi Li & Kenneth K. Y. Wong & Chung Hang Jonathan Choi & Vincent C. T. Mok & Hei-Ming Lai & Owen Randlett & Yu Hu & Ho Ko, 2023. "An optofluidic platform for interrogating chemosensory behavior and brainwide neural representation in larval zebrafish," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Kirsten Bohmbach & Nicola Masala & Eva M. Schönhense & Katharina Hill & André N. Haubrich & Andreas Zimmer & Thoralf Opitz & Heinz Beck & Christian Henneberger, 2022. "An astrocytic signaling loop for frequency-dependent control of dendritic integration and spatial learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. Shinichiro Kira & Houman Safaai & Ari S. Morcos & Stefano Panzeri & Christopher D. Harvey, 2023. "A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions," Nature Communications, Nature, vol. 14(1), pages 1-28, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:461:y:2009:i:7266:d:10.1038_nature08499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.