Author
Listed:
- Huijuan Dong
(Shanghai Jiao Tong University
Shanghai Jiao Tong University)
- Tianyu Zhang
(Shanghai Jiao Tong University)
- Yong Geng
(Shanghai Jiao Tong University
Shanghai Jiao Tong University
Shanghai Jiao Tong University)
- Peng Wang
(Chinese Academy of Sciences)
- Shu Zhang
(Tsinghua University)
- Joseph Sarkis
(Worcester Polytechnic Institute)
Abstract
Critical material constraints may limit and guide power system transitions towards net zero. Pathways to mitigate these constraints need to be evaluated and pursued to ensure successful transition. Here, we explore the material constraint mitigation pathways from the perspective of adjusting power generation sub-technology market shares, analysing nineteen critical materials that may cause material constraints. We find that the power generation system transition within China’s carbon neutrality scenario results in 52.2 megatonnes of cumulative material demand by 2060, approximately 2.7 times that of the business-as-usual scenario. Solar photovoltaic and wind power sub-technology market shares have the greatest impact on critical material demand. As progressive thin-film solar photovoltaic sub-technologies gain market share, the demand for gallium from solar photovoltaic may increase 56-fold. Material constraints are likely to occur for gallium, terbium, germanium, tellurium, indium, uranium and copper. The importance value is determined by the ratio of power sector to all-sector material demand; the importance value of gallium will increase to 50% due to increases in gallium arsenide and permanent magnet sub-technologies. Our study findings show that sub-technology market shares need to be considered when evaluating future material constraints. Our results provide insights for future research investigating mitigation pathways.
Suggested Citation
Huijuan Dong & Tianyu Zhang & Yong Geng & Peng Wang & Shu Zhang & Joseph Sarkis, 2025.
"Sub-technology market share strongly affects critical material constraints in power system transitions,"
Nature Communications, Nature, vol. 16(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56592-5
DOI: 10.1038/s41467-025-56592-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56592-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.