Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.117697
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
- Månberger, André & Stenqvist, Björn, 2018. "Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development," Energy Policy, Elsevier, vol. 119(C), pages 226-241.
- Hoenderdaal, Sander & Tercero Espinoza, Luis & Marscheider-Weidemann, Frank & Graus, Wina, 2013. "Can a dysprosium shortage threaten green energy technologies?," Energy, Elsevier, vol. 49(C), pages 344-355.
- Fizaine, Florian & Court, Victor, 2015.
"Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI,"
Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
- Florian Fizaine Fizaine & Victor Court, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Post-Print hal-01170989, HAL.
- Wang, Dawei & Zamel, Nada & Jiao, Kui & Zhou, Yibo & Yu, Shuhai & Du, Qing & Yin, Yan, 2013. "Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China," Energy, Elsevier, vol. 59(C), pages 402-412.
- Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019.
"Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport,"
Applied Energy, Elsevier, vol. 240(C), pages 6-25.
- Emmanuel Hache & Gondia Sokhna Seck & Marine Simoen & Clement Bonnet & Samuel Carcanague, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Post-Print hal-02061459, HAL.
- Emmanuel Hache & Gondia Sokhna Seck & Marine Simoën & Clément Bonnet & Samuel Carcanague, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Post-Print hal-02025059, HAL.
- Elshkaki, Ayman, 2013. "An analysis of future platinum resources, emissions and waste streams using a system dynamic model of its intentional and non-intentional flows and stocks," Resources Policy, Elsevier, vol. 38(3), pages 241-251.
- Ballinger, Benjamin & Stringer, Martin & Schmeda-Lopez, Diego R. & Kefford, Benjamin & Parkinson, Brett & Greig, Chris & Smart, Simon, 2019. "The vulnerability of electric vehicle deployment to critical mineral supply," Applied Energy, Elsevier, vol. 255(C).
- Li, Zhenhe & Khajepour, Amir & Song, Jinchun, 2019. "A comprehensive review of the key technologies for pure electric vehicles," Energy, Elsevier, vol. 182(C), pages 824-839.
- Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
- Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
- Viebahn, Peter & Soukup, Ole & Samadi, Sascha & Teubler, Jens & Wiesen, Klaus & Ritthoff, Michael, 2015. "Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 655-671.
- Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
- Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
- Elshkaki, Ayman & Graedel, T.E., 2014. "Dysprosium, the balance problem, and wind power technology," Applied Energy, Elsevier, vol. 136(C), pages 548-559.
- Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel & Ascaso, Sonia & Palacios, Jose-Luis, 2018. "Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways," Energy, Elsevier, vol. 159(C), pages 1175-1184.
- Florian Fizaine & Victor Court, 2015. "Renewable electricity producing technologies and metal depletion: a sensitivity analysis using the EROI," Post-Print halshs-01227860, HAL.
- Grandell, Leena & Lehtilä, Antti & Kivinen, Mari & Koljonen, Tiina & Kihlman, Susanna & Lauri, Laura S., 2016. "Role of critical metals in the future markets of clean energy technologies," Renewable Energy, Elsevier, vol. 95(C), pages 53-62.
- Hao, Han & Liu, Zongwei & Zhao, Fuquan & Geng, Yong & Sarkis, Joseph, 2017. "Material flow analysis of lithium in China," Resources Policy, Elsevier, vol. 51(C), pages 100-106.
- Huo, Hong & Wang, Michael, 2012. "Modeling future vehicle sales and stock in China," Energy Policy, Elsevier, vol. 43(C), pages 17-29.
- Fizaine, Florian & Court, Victor, 2015.
"Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI,"
Ecological Economics,
Elsevier, vol. 110(C), pages 106-118.
- Florian Fizaine & Victor Court, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Post-Print hal-01170989, HAL.
- Victor Court & Florian Fizaine, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Post-Print hal-01385962, HAL.
- Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.
- Du, Jiuyu & Ouyang, Minggao & Chen, Jingfu, 2017. "Prospects for Chinese electric vehicle technologies in 2016–2020: Ambition and rationality," Energy, Elsevier, vol. 120(C), pages 584-596.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Beibei Che & Chaofeng Shao & Zhirui Lu & Binghong Qian & Sihan Chen, 2022. "Mineral Requirements for China’s Energy Transition to 2060—Focus on Electricity and Transportation," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
- Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Yu, Zhen & Wang, Yilan & Ma, Xiaoqian & Shuai, Chuanmin & Zhao, Yujia, 2023. "How critical mineral supply security affects China NEVs industry? Based on a prediction for chromium and cobalt in 2030," Resources Policy, Elsevier, vol. 85(PB).
- Deng, Huifan & Zhao, Youqun & Feng, Shilin & Wang, Qiuwei & Zhang, Chenxi & Lin, Fen, 2021. "Torque vectoring algorithm based on mechanical elastic electric wheels with consideration of the stability and economy," Energy, Elsevier, vol. 219(C).
- Huang, Jianbai & Dong, Xuesong & Chen, Jinyu & Zeng, Anqi, 2023. "The slow-release effect of recycling on rapid demand growth of critical metals from EV batteries up to 2050: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
- Guohua, Yuan & Elshkaki, Ayman & Xiao, Xi, 2021. "Dynamic analysis of future nickel demand, supply, and associated materials, energy, water, and carbon emissions in China," Resources Policy, Elsevier, vol. 74(C).
- Ozawa, Akito & Morimoto, Shinichirou & Hatayama, Hiroki & Anzai, Yurie, 2023. "Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow," Energy, Elsevier, vol. 277(C).
- Li, Yuming & Wang, Tingyu & Li, Xinxi & Zhang, Guoqing & Chen, Kai & Yang, Wensheng, 2022. "Experimental investigation on thermal management system with flame retardant flexible phase change material for retired battery module," Applied Energy, Elsevier, vol. 327(C).
- Yang, Chen, 2022. "Running battery electric vehicles with extended range: Coupling cost and energy analysis," Applied Energy, Elsevier, vol. 306(PB).
- Wen, W. & Yang, S. & Zhou, P. & Gao, S.Z., 2021. "Impacts of COVID-19 on the electric vehicle industry: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Salim, Hengky & Sahin, Oz & Elsawah, Sondoss & Turan, Hasan & Stewart, Rodney A., 2022. "A critical review on tackling complex rare earth supply security problem," Resources Policy, Elsevier, vol. 77(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
- Elshkaki, Ayman, 2023. "The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios," Energy, Elsevier, vol. 267(C).
- Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
- Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
- Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
- Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022.
"Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data,"
Applied Energy, Elsevier, vol. 326(C).
- Hugo Le Boulzec & Louis Delannoy & Baptiste Andrieu & François Verzier & Olivier Vidal & Sandrine Mathy, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Post-Print hal-03780879, HAL.
- Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
- He, Rui-fang & Zhong, Mei-rui & Huang, Jian-bai, 2021. "The dynamic effects of renewable-energy and fossil-fuel technological progress on metal consumption in the electric power industry," Resources Policy, Elsevier, vol. 71(C).
- Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
- Zheng, Biao & Zhang, Yuquan & Chen, Yufeng, 2021. "Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data," Resources Policy, Elsevier, vol. 71(C).
- Islam, Md. Monirul & Sohag, Kazi & Hammoudeh, Shawkat & Mariev, Oleg & Samargandi, Nahla, 2022. "Minerals import demands and clean energy transitions: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
- Miller, Hugh & Dikau, Simon & Svartzman, Romain & Dees, Stéphane, 2023.
"The stumbling block in ‘the race of our lives’: transition-critical materials, financial risks and the NGFS climate scenarios,"
LSE Research Online Documents on Economics
118095, London School of Economics and Political Science, LSE Library.
- Miller, Hugh & Dikau, Simon & Svartzman, Romain & Dees, Stéphane, 2023. "The stumbling block in ‘the race of our lives’: transition-critical materials, financial risks and the NGFS climate scenarios," LSE Research Online Documents on Economics 118094, London School of Economics and Political Science, LSE Library.
- Hugh Miller & Simon Dikau & Romain Svartzman & Stéphane Dees, 2023. "The Stumbling Block in ‘the Race of our Lives’: Transition-Critical Materials, Financial Risks and the NGFS Climate Scenarios," Working papers 907, Banque de France.
- Aramendia, Emmanuel & Brockway, Paul E. & Taylor, Peter G. & Norman, Jonathan B., 2024. "Exploring the effects of mineral depletion on renewable energy technologies net energy returns," Energy, Elsevier, vol. 290(C).
- Islam, Md. Monirul & Sohag, Kazi & Alam, Md. Mahmudul, 2022.
"Mineral import demand and clean energy transitions in the top mineral-importing countries,"
Resources Policy, Elsevier, vol. 78(C).
- Islam, Monirul & Sohag, Kazi & Alam, Md. Mahmudul, 2022. "Mineral Import Demand and Clean Energy Transitions in the Top Mineral Importing Countries," OSF Preprints kbj69, Center for Open Science.
- Guohua, Yuan & Elshkaki, Ayman & Xiao, Xi, 2021. "Dynamic analysis of future nickel demand, supply, and associated materials, energy, water, and carbon emissions in China," Resources Policy, Elsevier, vol. 74(C).
- Chen, Jinyu & Luo, Qian & Tu, Yan & Ren, Xiaohang & Naderi, Niki, 2023. "Renewable energy transition and metal consumption: Dynamic evolution analysis based on transnational data," Resources Policy, Elsevier, vol. 85(PB).
- Islam, Md. Monirul & Sohag, Kazi & Mariev, Oleg, 2024. "Mineral import demand-driven solar energy generation in China: A threshold estimation using the counterfactual shock approach," Renewable Energy, Elsevier, vol. 221(C).
- Vincent Moreau & Piero Carlo Dos Reis & François Vuille, 2019. "Enough Metals? Resource Constraints to Supply a Fully Renewable Energy System," Resources, MDPI, vol. 8(1), pages 1-18, January.
More about this item
Keywords
Electric vehicles; Critical materials; Scenario analysis; Dynamic MFA; China;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308045. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.