IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v619y2023i7971d10.1038_s41586-023-06180-8.html
   My bibliography  Save this article

Accelerating the energy transition towards photovoltaic and wind in China

Author

Listed:
  • Yijing Wang

    (Fudan University)

  • Rong Wang

    (Fudan University
    Fudan University
    Fudan University
    Shanghai Frontiers Science Center of Atmosphere-Ocean Interaction)

  • Katsumasa Tanaka

    (Université Paris-Saclay
    National Institute for Environmental Studies (NIES))

  • Philippe Ciais

    (Université Paris-Saclay
    Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute)

  • Josep Penuelas

    (CSIC, Global Ecology Unit CREAF-CSIC-UAB
    CREAF)

  • Yves Balkanski

    (Université Paris-Saclay)

  • Jordi Sardans

    (CSIC, Global Ecology Unit CREAF-CSIC-UAB
    CREAF)

  • Didier Hauglustaine

    (Université Paris-Saclay)

  • Wang Liu

    (Fudan University)

  • Xiaofan Xing

    (Fudan University)

  • Jiarong Li

    (Fudan University)

  • Siqing Xu

    (Fudan University)

  • Yuankang Xiong

    (Fudan University)

  • Ruipu Yang

    (Fudan University)

  • Junji Cao

    (Chinese Academy of Sciences)

  • Jianmin Chen

    (Fudan University
    Fudan University
    Fudan University)

  • Lin Wang

    (Fudan University
    Fudan University
    Fudan University)

  • Xu Tang

    (Fudan University
    Fudan University)

  • Renhe Zhang

    (Fudan University
    Fudan University)

Abstract

China’s goal to achieve carbon (C) neutrality by 2060 requires scaling up photovoltaic (PV) and wind power from 1 to 10–15 PWh year−1 (refs. 1–5). Following the historical rates of renewable installation1, a recent high-resolution energy-system model6 and forecasts based on China’s 14th Five-year Energy Development (CFED)7, however, only indicate that the capacity will reach 5–9.5 PWh year−1 by 2060. Here we show that, by individually optimizing the deployment of 3,844 new utility-scale PV and wind power plants coordinated with ultra-high-voltage (UHV) transmission and energy storage and accounting for power-load flexibility and learning dynamics, the capacity of PV and wind power can be increased from 9 PWh year−1 (corresponding to the CFED path) to 15 PWh year−1, accompanied by a reduction in the average abatement cost from US$97 to US$6 per tonne of carbon dioxide (tCO2). To achieve this, annualized investment in PV and wind power should ramp up from US$77 billion in 2020 (current level) to US$127 billion in the 2020s and further to US$426 billion year−1 in the 2050s. The large-scale deployment of PV and wind power increases income for residents in the poorest regions as co-benefits. Our results highlight the importance of upgrading power systems by building energy storage, expanding transmission capacity and adjusting power load at the demand side to reduce the economic cost of deploying PV and wind power to achieve carbon neutrality in China.

Suggested Citation

  • Yijing Wang & Rong Wang & Katsumasa Tanaka & Philippe Ciais & Josep Penuelas & Yves Balkanski & Jordi Sardans & Didier Hauglustaine & Wang Liu & Xiaofan Xing & Jiarong Li & Siqing Xu & Yuankang Xiong , 2023. "Accelerating the energy transition towards photovoltaic and wind in China," Nature, Nature, vol. 619(7971), pages 761-767, July.
  • Handle: RePEc:nat:nature:v:619:y:2023:i:7971:d:10.1038_s41586-023-06180-8
    DOI: 10.1038/s41586-023-06180-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06180-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06180-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bożena Babiarz & Dorota Anna Krawczyk & Alicja Siuta-Olcha & Candida Duarte Manuel & Artur Jaworski & Ewelina Barnat & Tomasz Cholewa & Beata Sadowska & Martyna Bocian & Maciej Gnieciak & Anna Werner-, 2024. "Energy Efficiency in Buildings: Toward Climate Neutrality," Energies, MDPI, vol. 17(18), pages 1-38, September.
    2. Yifei Deng & Yijing Wang & Xiaofan Xing & Yuankang Xiong & Siqing Xu & Rong Wang, 2024. "Requirement on the Capacity of Energy Storage to Meet the 2 °C Goal," Sustainability, MDPI, vol. 16(9), pages 1-17, April.
    3. Pedro Gomes da Cruz Filho & Danielle Devequi Gomes Nunes & Hayna Malta Santos & Alex Álisson Bandeira Santos & Bruna Aparecida Souza Machado, 2023. "From Patents to Progress: Genetic Algorithms in Harmonic Distortion Monitoring Technology," Energies, MDPI, vol. 16(24), pages 1-21, December.
    4. Deroubaix, Paul & Kobashi, Takuro & Gurriaran, Léna & Benkhelifa, Fouzi & Ciais, Philippe & Tanaka, Katsumasa, 2023. "SolarEV City Concept for Paris," Applied Energy, Elsevier, vol. 350(C).
    5. Jiayu Bao & Xianglong Li & Tao Yu & Liangliang Jiang & Jialin Zhang & Fengjiao Song & Wenqiang Xu, 2024. "Are Regions Conducive to Photovoltaic Power Generation Demonstrating Significant Potential for Harnessing Solar Energy via Photovoltaic Systems?," Sustainability, MDPI, vol. 16(8), pages 1-19, April.
    6. Gong, Shengen & Zhao, Jiaxin & Sun, Kaisheng & Jia, Xiaoteng & Chao, Danming, 2024. "Interfacial structuring of MnN and MnC bonds by defect engineering for high-performance Zn-Mn battery," Applied Energy, Elsevier, vol. 365(C).
    7. Qianhao He & Xiaoxiao Luan & Jiayi Wang & Yuzhong Liu & Shuyun Yang, 2024. "Rooftop PV Development Suitability and Carbon Benefits: An Anhui Province Case Study," Sustainability, MDPI, vol. 16(13), pages 1-24, June.
    8. Yang, Mao & Han, Chao & Zhang, Wei & Wang, Bo, 2024. "A short-term power prediction method for wind farm cluster based on the fusion of multi-source spatiotemporal feature information," Energy, Elsevier, vol. 294(C).
    9. Minde An & Ronald G. Prinn & Luke M. Western & Xingchen Zhao & Bo Yao & Jianxin Hu & Anita L. Ganesan & Jens Mühle & Ray F. Weiss & Paul B. Krummel & Simon O’Doherty & Dickon Young & Matthew Rigby, 2024. "Sustained growth of sulfur hexafluoride emissions in China inferred from atmospheric observations," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Lin Wang & Yugang He & Renhong Wu, 2024. "Digitization Meets Energy Transition: Shaping the Future of Environmental Sustainability," Energies, MDPI, vol. 17(4), pages 1-25, February.
    11. Ye Yang & Zegen Wang & Ying Zhang & Jiulin Jiang & Jiwu He, 2023. "Spatial and Temporal Patterns of Green Energy Development in China," Sustainability, MDPI, vol. 15(22), pages 1-15, November.
    12. Zhang, Jie & Xiao, Bo & Niu, Geng & Xie, Xuanzhi & Wu, Saixiang, 2024. "Joint estimation of state-of-charge and state-of-power for hybrid supercapacitors using fractional-order adaptive unscented Kalman filter," Energy, Elsevier, vol. 294(C).
    13. Hou, Yaru & Yang, Mian & Ma, Yanran & Zhang, Haiying, 2024. "Study on city's energy transition: Evidence from the establishment of the new energy demonstration cities in China," Energy, Elsevier, vol. 292(C).
    14. Wang, Wei-Wei & Chen, Jun-Wen & Zhang, Chun-Yu & Yang, Hong-Fei & Ji, Xiao-Wen & Zhang, Hong-Liang & Zhao, Fu-Yun & Cai, Yang, 2024. "Green thermal management of photovoltaic panels by the absorbent hydrogel evaporative (AHE) cooling jointly with 3D porous copper foam (CF) structure," Energy, Elsevier, vol. 293(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:619:y:2023:i:7971:d:10.1038_s41586-023-06180-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.