IDEAS home Printed from https://ideas.repec.org/a/spr/bioerq/v6y2021i2d10.1007_s41247-021-00088-5.html
   My bibliography  Save this article

Reduced Use of Fossil Fuels can Reduce Supply of Critical Resources

Author

Listed:
  • André Månberger

    (Lund University)

Abstract

Previous research has identified that climate change mitigation policies could increase demand for resources perceived as critical, because these are used in many renewable energy technologies. This study assesses how reducing the extraction and use of fossil fuels could affect the supply of (i) elements jointly produced with fossil fuels and (ii) elements jointly produced with a host that is currently mainly used in fossil fuel supply chains. Several critical resources are identified for which supply potential from current sources is likely to decline. Some of these, e.g. germanium and vanadium, have uses in low-carbon energy systems. Renewable energy transitions can thus simultaneously increase demand and reduce supply of critical elements. The problem is greatest for technology groups in which by-products are more difficult to recycle than the host. Photovoltaic cell technology stands out as one such group. Phasing out fossil fuels has the potential to reduce both the supply potential (i.e. primary flow) and recoverable resources (i.e. stock) of materials involved in such technology groups. Further studies could examine possibilities to increase recovery rates, extract jointly produced resources independently of hosts and how the geographical distribution of by-product supply sources might change if fossil fuel extraction is scaled back.

Suggested Citation

  • André Månberger, 2021. "Reduced Use of Fossil Fuels can Reduce Supply of Critical Resources," Biophysical Economics and Resource Quality, Springer, vol. 6(2), pages 1-15, June.
  • Handle: RePEc:spr:bioerq:v:6:y:2021:i:2:d:10.1007_s41247-021-00088-5
    DOI: 10.1007/s41247-021-00088-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s41247-021-00088-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s41247-021-00088-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. E. Graedel & Barbara K. Reck, 2016. "Six Years of Criticality Assessments: What Have We Learned So Far?," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 692-699, August.
    2. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
    3. Månberger, André & Stenqvist, Björn, 2018. "Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development," Energy Policy, Elsevier, vol. 119(C), pages 226-241.
    4. Jordan, Brett, 2018. "Economics literature on joint production of minerals: A survey," Resources Policy, Elsevier, vol. 55(C), pages 20-28.
    5. Campbell, Gary A., 1985. "The role of co-products in stabilizing the metal mining industry," Resources Policy, Elsevier, vol. 11(4), pages 267-274, December.
    6. Fizaine, Florian, 2013. "Byproduct production of minor metals: Threat or opportunity for the development of clean technologies? The PV sector as an illustration," Resources Policy, Elsevier, vol. 38(3), pages 373-383.
    7. McGlade, Christophe & Ekins, Paul, 2014. "Un-burnable oil: An examination of oil resource utilisation in a decarbonised energy system," Energy Policy, Elsevier, vol. 64(C), pages 102-112.
    8. Frenzel, Max & Ketris, Marina P. & Seifert, Thomas & Gutzmer, Jens, 2016. "On the current and future availability of gallium," Resources Policy, Elsevier, vol. 47(C), pages 38-50.
    9. William J. Nuttall & Richard H. Clarke & Bartek A. Glowacki, 2012. "Stop squandering helium," Nature, Nature, vol. 485(7400), pages 573-575, May.
    10. Éléonore Lèbre & Martin Stringer & Kamila Svobodova & John R. Owen & Deanna Kemp & Claire Côte & Andrea Arratia-Solar & Rick K. Valenta, 2020. "The social and environmental complexities of extracting energy transition metals," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    11. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, September.
    12. Frenzel, Max & Mikolajczak, Claire & Reuter, Markus A. & Gutzmer, Jens, 2017. "Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium," Resources Policy, Elsevier, vol. 52(C), pages 327-335.
    13. Christophe McGlade & Paul Ekins, 2015. "The geographical distribution of fossil fuels unused when limiting global warming to 2 °C," Nature, Nature, vol. 517(7533), pages 187-190, January.
    14. Smith Stegen, Karen, 2015. "Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis," Energy Policy, Elsevier, vol. 79(C), pages 1-8.
    15. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    16. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    17. Farrow, Scott & Krautkraemer, Jeffrey A., 1989. "Extraction at the intensive margin : Metal supply and grade selection in response to anticipated and unanticipated price changes," Resources and Energy, Elsevier, vol. 11(1), pages 1-21, March.
    18. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, September.
    19. Zhang, Wei & Yang, Jiakuan & Wu, Xu & Hu, Yuchen & Yu, Wenhao & Wang, Junxiong & Dong, Jinxin & Li, Mingyang & Liang, Sha & Hu, Jingping & Kumar, R. Vasant, 2016. "A critical review on secondary lead recycling technology and its prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 108-122.
    20. Vakulchuk, Roman & Overland, Indra & Scholten, Daniel, 2020. "Renewable energy and geopolitics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    21. Anna Hulda Olafsdottir & Harald Ulrik Sverdrup, 2020. "Assessing the Past and Future Sustainability of Global Helium Resources, Extraction, Supply and Use, Using the Integrated Assessment Model WORLD7," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-18, June.
    22. Tae Woo Kim & Yuan Ping & Giulia A. Galli & Kyoung-Shin Choi, 2015. "Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    23. Rappold, T.A. & Lackner, K.S., 2010. "Large scale disposal of waste sulfur: From sulfide fuels to sulfate sequestration," Energy, Elsevier, vol. 35(3), pages 1368-1380.
    24. Luis Enrique Garcia & Aude Illig & Ian Schindler, 2020. "Understanding Oil Cycle Dynamics to Design the Future Economy," Biophysical Economics and Resource Quality, Springer, vol. 5(4), pages 1-17, December.
    25. Lee, J. & Bazilian, M. & Sovacool, B. & Hund, K. & Jowitt, S.M. & Nguyen, T.P. & Månberger, A. & Kah, M. & Greene, S. & Galeazzi, C. & Awuah-Offei, K. & Moats, M. & Tilton, J. & Kukoda, S., 2020. "Reviewing the material and metal security of low-carbon energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    26. Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.
    27. Redlinger, Michael & Eggert, Roderick, 2016. "Volatility of by-product metal and mineral prices," Resources Policy, Elsevier, vol. 47(C), pages 69-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    2. Jordan, Brett, 2018. "Economics literature on joint production of minerals: A survey," Resources Policy, Elsevier, vol. 55(C), pages 20-28.
    3. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
    4. Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
    5. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
    6. Beibei Che & Chaofeng Shao & Zhirui Lu & Binghong Qian & Sihan Chen, 2022. "Mineral Requirements for China’s Energy Transition to 2060—Focus on Electricity and Transportation," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    7. Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
    8. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    9. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    11. Elshkaki, Ayman, 2023. "The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios," Energy, Elsevier, vol. 267(C).
    12. Shammugam, Shivenes & Rathgeber, Andreas & Schlegl, Thomas, 2019. "Causality between metal prices: Is joint consumption a more important determinant than joint production of main and by-product metals?," Resources Policy, Elsevier, vol. 61(C), pages 49-66.
    13. Islam, Md. Monirul & Sohag, Kazi & Mariev, Oleg, 2024. "Mineral import demand-driven solar energy generation in China: A threshold estimation using the counterfactual shock approach," Renewable Energy, Elsevier, vol. 221(C).
    14. Elshkaki, Ayman, 2020. "Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications," Energy, Elsevier, vol. 202(C).
    15. Song, Huiling & Wang, Chang & Lei, Xiaojie & Zhang, Hongwei, 2022. "Dynamic dependence between main-byproduct metals and the role of clean energy market," Energy Economics, Elsevier, vol. 108(C).
    16. Kim, Kihyung, 2020. "Jointly produced metal markets are endogenously unstable," Resources Policy, Elsevier, vol. 66(C).
    17. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. Tessa Lee & Yuan Yao & Thomas E. Graedel & Alessio Miatto, 2024. "Critical material requirements and recycling opportunities for US wind and solar power generation," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 527-541, June.
    19. Liang, Yanan & Kleijn, René & van der Voet, Ester, 2023. "Increase in demand for critical materials under IEA Net-Zero emission by 2050 scenario," Applied Energy, Elsevier, vol. 346(C).
    20. Jordan, Brett W, 2017. "Companions and competitors: Joint metal-supply relationships in gold, silver, copper, lead and zinc mines," Resource and Energy Economics, Elsevier, vol. 49(C), pages 233-250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:bioerq:v:6:y:2021:i:2:d:10.1007_s41247-021-00088-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.