IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v161y2022ics1364032122002477.html
   My bibliography  Save this article

Material requirements for low-carbon energy technologies: A quantitative review

Author

Listed:
  • Liang, Yanan
  • Kleijn, René
  • Tukker, Arnold
  • van der Voet, Ester

Abstract

Deployment of clean energy technologies will require a considerable amount of materials. The surge in demand for metals related to emerging energy technologies may hinder the energy transition. In this study we provide a comprehensive overview and analysis of existing work in this field, a solid quantitative baseline for material requirements of different energy technologies and quantitative information that can be used to generate learning curves for the material requirements of different energy technologies. We conducted a quantitative review of the material requirements of low-carbon energy technologies in 132 scientific publications, and provided a comparative analysis of detailed data including material intensity and lifetime data. Besides providing a large amount of structured quantitative data, the results of our work indicate that: (1) research on the demand for low-carbon technology related metals has received much attention since the 2010s; (2) around 80% of the publications focus on the global level while national level studies are underrepresented; (3) science-based future scenarios are the main means of estimating total future material requirements; (4) most studies foresee material constraints of large-scale implementation of low-carbon technologies and the secure and responsible supply of these materials is still the subject of discussion; (5) changes in metal intensity caused by technological development and material requirements for non-critical components are important though often overlooked.

Suggested Citation

  • Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002477
    DOI: 10.1016/j.rser.2022.112334
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122002477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 543(7645), pages 367-372, March.
    2. Fthenakis, Vasilis, 2009. "Sustainability of photovoltaics: The case for thin-film solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2746-2750, December.
    3. Stamp, Anna & Wäger, Patrick A. & Hellweg, Stefanie, 2014. "Linking energy scenarios with metal demand modeling–The case of indium in CIGS solar cells," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 156-167.
    4. Dierk Raabe & C. Cem Tasan & Elsa A. Olivetti, 2019. "Strategies for improving the sustainability of structural metals," Nature, Nature, vol. 575(7781), pages 64-74, November.
    5. Andersson, B.A & Azar, C & Holmberg, J & Karlsson, S, 1998. "Material constraints for thin-film solar cells," Energy, Elsevier, vol. 23(5), pages 407-411.
    6. Tomer Fishman & T. E. Graedel, 2019. "Impact of the establishment of US offshore wind power on neodymium flows," Nature Sustainability, Nature, vol. 2(4), pages 332-338, April.
    7. Andersson, Bjorn A. & Jacobsson, Staffan, 2000. "Monitoring and assessing technology choice: the case of solar cells," Energy Policy, Elsevier, vol. 28(14), pages 1037-1049, November.
    8. Arent, Doug & Pless, Jacquelyn & Mai, Trieu & Wiser, Ryan & Hand, Maureen & Baldwin, Sam & Heath, Garvin & Macknick, Jordan & Bazilian, Morgan & Schlosser, Adam & Denholm, Paul, 2014. "Implications of high renewable electricity penetration in the U.S. for water use, greenhouse gas emissions, land-use, and materials supply," Applied Energy, Elsevier, vol. 123(C), pages 368-377.
    9. Fizaine, Florian, 2013. "Byproduct production of minor metals: Threat or opportunity for the development of clean technologies? The PV sector as an illustration," Resources Policy, Elsevier, vol. 38(3), pages 373-383.
    10. Kim, Junbeum & Guillaume, Bertrand & Chung, Jinwook & Hwang, Yongwoo, 2015. "Critical and precious materials consumption and requirement in wind energy system in the EU 27," Applied Energy, Elsevier, vol. 139(C), pages 327-334.
    11. Tokimatsu, Koji & Wachtmeister, Henrik & McLellan, Benjamin & Davidsson, Simon & Murakami, Shinsuke & Höök, Mikael & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2°C target," Applied Energy, Elsevier, vol. 207(C), pages 494-509.
    12. Joeri Rogelj & Michel den Elzen & Niklas Höhne & Taryn Fransen & Hanna Fekete & Harald Winkler & Roberto Schaeffer & Fu Sha & Keywan Riahi & Malte Meinshausen, 2016. "Paris Agreement climate proposals need a boost to keep warming well below 2 °C," Nature, Nature, vol. 534(7609), pages 631-639, June.
    13. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    14. Jensen, J.P. & Skelton, K., 2018. "Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 165-176.
    15. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    16. Dominković, D.F. & Bačeković, I. & Pedersen, A.S. & Krajačić, G., 2018. "The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1823-1838.
    17. Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Grandell, Leena & Thorenz, Andrea, 2014. "Silver supply risk analysis for the solar sector," Renewable Energy, Elsevier, vol. 69(C), pages 157-165.
    19. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel & Ascaso, Sonia & Palacios, Jose-Luis, 2018. "Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways," Energy, Elsevier, vol. 159(C), pages 1175-1184.
    20. Simon, Bálint & Ziemann, Saskia & Weil, Marcel, 2015. "Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 300-310.
    21. Kleijn, René & van der Voet, Ester & Kramer, Gert Jan & van Oers, Lauran & van der Giesen, Coen, 2011. "Metal requirements of low-carbon power generation," Energy, Elsevier, vol. 36(9), pages 5640-5648.
    22. Grandell, Leena & Lehtilä, Antti & Kivinen, Mari & Koljonen, Tiina & Kihlman, Susanna & Lauri, Laura S., 2016. "Role of critical metals in the future markets of clean energy technologies," Renewable Energy, Elsevier, vol. 95(C), pages 53-62.
    23. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    24. Imholte, D.D. & Nguyen, R.T. & Vedantam, A. & Brown, M. & Iyer, A. & Smith, B.J. & Collins, J.W. & Anderson, C.G. & O’Kelley, B., 2018. "An assessment of U.S. rare earth availability for supporting U.S. wind energy growth targets," Energy Policy, Elsevier, vol. 113(C), pages 294-305.
    25. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    26. Liu, Liansheng & Kong, Fanxin & Liu, Xue & Peng, Yu & Wang, Qinglong, 2015. "A review on electric vehicles interacting with renewable energy in smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 648-661.
    27. Ravikumar, Dwarakanath & Malghan, Deepak, 2013. "Material constraints for indigenous production of CdTe PV: Evidence from a Monte Carlo experiment using India's National Solar Mission Benchmarks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 393-403.
    28. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
    29. Heymans, Catherine & Walker, Sean B. & Young, Steven B. & Fowler, Michael, 2014. "Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling," Energy Policy, Elsevier, vol. 71(C), pages 22-30.
    30. Candelise, Chiara & Speirs, Jamie F. & Gross, Robert J.K., 2011. "Materials availability for thin film (TF) PV technologies development: A real concern?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4972-4981.
    31. Viebahn, Peter & Soukup, Ole & Samadi, Sascha & Teubler, Jens & Wiesen, Klaus & Ritthoff, Michael, 2015. "Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 655-671.
    32. Lee, J. & Bazilian, M. & Sovacool, B. & Hund, K. & Jowitt, S.M. & Nguyen, T.P. & Månberger, A. & Kah, M. & Greene, S. & Galeazzi, C. & Awuah-Offei, K. & Moats, M. & Tilton, J. & Kukoda, S., 2020. "Reviewing the material and metal security of low-carbon energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    33. Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.
    34. Pihl, Erik & Kushnir, Duncan & Sandén, Björn & Johnsson, Filip, 2012. "Material constraints for concentrating solar thermal power," Energy, Elsevier, vol. 44(1), pages 944-954.
    35. Yang, Zijun & Wang, Bowen & Jiao, Kui, 2020. "Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China," Energy, Elsevier, vol. 198(C).
    36. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Correction: Corrigendum: Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 547(7662), pages 246-246, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Yanan & Kleijn, René & van der Voet, Ester, 2023. "Increase in demand for critical materials under IEA Net-Zero emission by 2050 scenario," Applied Energy, Elsevier, vol. 346(C).
    2. Oduro, Richard A. & Taylor, Peter G., 2023. "Future pathways for energy networks: A review of international experiences in high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Yang, Xiaoming & Islam, Md. Monirul & Mentel, Grzegorz & Ahmad, Ashfaq & Vasa, László, 2024. "Synergistic dynamics unveiled: Interplay between rare earth prices, clean energy innovations, and tech companies' market resilience amidst the Covid-19 pandemic and Russia-Ukraine conflict," Resources Policy, Elsevier, vol. 89(C).
    4. Aramendia, Emmanuel & Brockway, Paul E. & Taylor, Peter G. & Norman, Jonathan B., 2024. "Exploring the effects of mineral depletion on renewable energy technologies net energy returns," Energy, Elsevier, vol. 290(C).
    5. Rao Fu & Kun Peng & Peng Wang & Honglin Zhong & Bin Chen & Pengfei Zhang & Yiyi Zhang & Dongyang Chen & Xi Liu & Kuishuang Feng & Jiashuo Li, 2023. "Tracing metal footprints via global renewable power value chains," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Regueiro-Ferreira, Rosa María & Alonso-Fernández, Pablo, 2023. "Interaction between renewable energy consumption and dematerialization: Insights based on the material footprint and the Environmental Kuznets Curve," Energy, Elsevier, vol. 266(C).
    7. Zhang, Zhouyi & Song, Yi & Cheng, Jinhua & Zhang, Yijun, 2023. "Effects of heterogeneous ICT on critical metal supply: A differentiated perspective on primary and secondary supply," Resources Policy, Elsevier, vol. 83(C).
    8. Li, Zehong & Wang, Chunying & Chen, Jian, 2024. "Supply and demand of lithium in China based on dynamic material flow analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    9. Anthony L. Cheng & Erica R. H. Fuchs & Valerie J. Karplus & Jeremy J. Michalek, 2024. "Electric vehicle battery chemistry affects supply chain disruption vulnerabilities," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Srivastava, Nidhi, 2023. "Trade in critical minerals: Revisiting the legal regime in times of energy transition," Resources Policy, Elsevier, vol. 82(C).
    11. Ding, Chante Jian & Chen, Hang & Liu, Yin & Hu, Jin & Hu, Mingjun & Chen, Dong & Irfan, Muhammad, 2024. "Unleashing digital empowerment: Pioneering low-carbon development through the broadband China strategy," Energy, Elsevier, vol. 295(C).
    12. Schischke, A. & Papenfuß, P. & Brem, M. & Kurz, P. & Rathgeber, A.W., 2023. "Sustainable energy transition and its demand for scarce resources: Insights into the German Energiewende through a new risk assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    13. Zhao, Congyu & Dong, Kangyin & Wang, Kun & Dong, Xiucheng, 2023. "Can low-carbon energy technology lead to energy resource carrying capacity improvement? The case of China," Energy Economics, Elsevier, vol. 127(PA).
    14. Yves Jégourel, 2024. "Transition énergétique, ressources minérales et stratégie européenne de sécurisation des approvisionnements industriels : contraintes et synergies," Research papers & Policy papers on Commodities & Energy 2408, Policy Center for the New South.
    15. Song, Yi & Zhang, Zhouyi & Zhang, Yijun & Cheng, Jinhua, 2022. "Technological innovation and supply of critical metals: A perspective of industrial chains," Resources Policy, Elsevier, vol. 79(C).
    16. Ghorbani, Yousef & Zhang, Steven E. & Bourdeau, Julie E. & Chipangamate, Nelson S. & Rose, Derek H. & Valodia, Imraan & Nwaila, Glen T., 2024. "The strategic role of lithium in the green energy transition: Towards an OPEC-style framework for green energy-mineral exporting countries (GEMEC)," Resources Policy, Elsevier, vol. 90(C).
    17. Tom Terlouw & Lorenzo Rosa & Christian Bauer & Russell McKenna, 2024. "Future hydrogen economies imply environmental trade-offs and a supply-demand mismatch," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Tang, Junrong & Li, Qibin & Wang, Shukun & Yu, Haoshui, 2023. "Thermo-economic optimization and comparative analysis of different organic flash cycles for the supercritical CO2 recompression Brayton cycle waste heat recovery," Energy, Elsevier, vol. 278(PB).
    19. McNulty, Brian A. & Jowitt, Simon M., 2022. "Byproduct critical metal supply and demand and implications for the energy transition: A case study of tellurium supply and CdTe PV demand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Islam, Md. Monirul & Sohag, Kazi & Berezin, Andrey & Sergi, Bruno S., 2024. "Factor proportions model for Russian mineral supply-driven global energy transition: Does externality matter?," Energy Economics, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
    2. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    3. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    4. Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
    5. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    6. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    7. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    8. Beibei Che & Chaofeng Shao & Zhirui Lu & Binghong Qian & Sihan Chen, 2022. "Mineral Requirements for China’s Energy Transition to 2060—Focus on Electricity and Transportation," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    9. Kim Maya Yavor & Vanessa Bach & Matthias Finkbeiner, 2021. "Resource Assessment of Renewable Energy Systems—A Review," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    10. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
    11. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
    12. Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.
    13. Elshkaki, Ayman, 2020. "Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications," Energy, Elsevier, vol. 202(C).
    14. Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Kim, Junbeum & Guillaume, Bertrand & Chung, Jinwook & Hwang, Yongwoo, 2015. "Critical and precious materials consumption and requirement in wind energy system in the EU 27," Applied Energy, Elsevier, vol. 139(C), pages 327-334.
    16. Matheus L. C. M. Henckens, 2022. "The Energy Transition and Energy Equity: A Compatible Combination?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    17. He, Rui-fang & Zhong, Mei-rui & Huang, Jian-bai, 2021. "The dynamic effects of renewable-energy and fossil-fuel technological progress on metal consumption in the electric power industry," Resources Policy, Elsevier, vol. 71(C).
    18. Ozawa, Akito & Morimoto, Shinichirou & Hatayama, Hiroki & Anzai, Yurie, 2023. "Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow," Energy, Elsevier, vol. 277(C).
    19. Zheng, Biao & Zhang, Yuquan & Chen, Yufeng, 2021. "Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data," Resources Policy, Elsevier, vol. 71(C).
    20. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.