Future material requirements for global sustainable offshore wind energy development
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2022.112603
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Månberger, André & Stenqvist, Björn, 2018. "Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development," Energy Policy, Elsevier, vol. 119(C), pages 226-241.
- Rodrigues, S. & Restrepo, C. & Kontos, E. & Teixeira Pinto, R. & Bauer, P., 2015. "Trends of offshore wind projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1114-1135.
- Zhenzhong Zeng & Alan D. Ziegler & Timothy Searchinger & Long Yang & Anping Chen & Kunlu Ju & Shilong Piao & Laurent Z. X. Li & Philippe Ciais & Deliang Chen & Junguo Liu & Cesar Azorin-Molina & Adria, 2019. "A reversal in global terrestrial stilling and its implications for wind energy production," Nature Climate Change, Nature, vol. 9(12), pages 979-985, December.
- Kim, Junbeum & Guillaume, Bertrand & Chung, Jinwook & Hwang, Yongwoo, 2015. "Critical and precious materials consumption and requirement in wind energy system in the EU 27," Applied Energy, Elsevier, vol. 139(C), pages 327-334.
- Till Zimmermann & Max Rehberger & Stefan Gößling-Reisemann, 2013. "Material Flows Resulting from Large Scale Deployment of Wind Energy in Germany," Resources, MDPI, vol. 2(3), pages 1-32, August.
- Raadal, Hanne Lerche & Vold, Bjørn Ivar & Myhr, Anders & Nygaard, Tor Anders, 2014. "GHG emissions and energy performance of offshore wind power," Renewable Energy, Elsevier, vol. 66(C), pages 314-324.
- Elsner, Paul, 2019. "Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 394-407.
- Igwemezie, Victor & Mehmanparast, Ali & Kolios, Athanasios, 2019. "Current trend in offshore wind energy sector and material requirements for fatigue resistance improvement in large wind turbine support structures – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 181-196.
- Topham, Eva & McMillan, David & Bradley, Stuart & Hart, Edward, 2019. "Recycling offshore wind farms at decommissioning stage," Energy Policy, Elsevier, vol. 129(C), pages 698-709.
- Cetinay, Hale & Kuipers, Fernando A. & Guven, A. Nezih, 2017. "Optimal siting and sizing of wind farms," Renewable Energy, Elsevier, vol. 101(C), pages 51-58.
- Viebahn, Peter & Soukup, Ole & Samadi, Sascha & Teubler, Jens & Wiesen, Klaus & Ritthoff, Michael, 2015. "Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 655-671.
- Ebbe Bagge Paulsen & Peter Enevoldsen, 2021. "A Multidisciplinary Review of Recycling Methods for End-of-Life Wind Turbine Blades," Energies, MDPI, vol. 14(14), pages 1-13, July.
- Golev, Artem & Scott, Margaretha & Erskine, Peter D. & Ali, Saleem H. & Ballantyne, Grant R., 2014. "Rare earths supply chains: Current status, constraints and opportunities," Resources Policy, Elsevier, vol. 41(C), pages 52-59.
- Gervais, Estelle & Shammugam, Shivenes & Friedrich, Lorenz & Schlegl, Thomas, 2021. "Raw material needs for the large-scale deployment of photovoltaics – Effects of innovation-driven roadmaps on material constraints until 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Tomer Fishman & T. E. Graedel, 2019. "Impact of the establishment of US offshore wind power on neodymium flows," Nature Sustainability, Nature, vol. 2(4), pages 332-338, April.
- Kavya Madhu & Stefan Pauliuk & Sumukha Dhathri & Felix Creutzig, 2021. "Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment," Nature Energy, Nature, vol. 6(11), pages 1035-1044, November.
- Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
- Kaldellis, J.K. & Apostolou, D., 2017. "Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 108(C), pages 72-84.
- Rebecca Thorne & Fernando Aguilar Lopez & Erik Figenbaum & Lasse Fridstrøm & Daniel Beat Müller, 2021. "Estimating stocks and flows of electric passenger vehicle batteries in the Norwegian fleet from 2011 to 2030," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1529-1542, December.
- Topham, Eva & McMillan, David, 2017. "Sustainable decommissioning of an offshore wind farm," Renewable Energy, Elsevier, vol. 102(PB), pages 470-480.
- Sacchi, Romain & Besseau, Romain & Pérez-López, Paula & Blanc, Isabelle, 2019. "Exploring technologically, temporally and geographically-sensitive life cycle inventories for wind turbines: A parameterized model for Denmark," Renewable Energy, Elsevier, vol. 132(C), pages 1238-1250.
- Nassar, Nedal T. & Wilburn, David R. & Goonan, Thomas G., 2016. "Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios," Applied Energy, Elsevier, vol. 183(C), pages 1209-1226.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rao Fu & Kun Peng & Peng Wang & Honglin Zhong & Bin Chen & Pengfei Zhang & Yiyi Zhang & Dongyang Chen & Xi Liu & Kuishuang Feng & Jiashuo Li, 2023. "Tracing metal footprints via global renewable power value chains," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
- Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
- Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Yashuang Feng & Lixiao Zhang, 2023. "The GHG Intensities of Wind Power Plants in China from a Life-Cycle Perspective: The Impacts of Geographical Location, Turbine Technology and Management Level," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
- Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
- Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Francisco Haces-Fernandez, 2020. "GoWInD: Wind Energy Spatiotemporal Assessment and Characterization of End-of-Life Activities," Energies, MDPI, vol. 13(22), pages 1-20, November.
- Song, Huiling & Wang, Chang & Sun, Kun & Geng, Hongjun & Zuo, Lyushui, 2023. "Material efficiency strategies across the industrial chain to secure indium availability for global carbon neutrality," Resources Policy, Elsevier, vol. 85(PB).
- Islam, Md. Monirul & Sohag, Kazi & Hammoudeh, Shawkat & Mariev, Oleg & Samargandi, Nahla, 2022. "Minerals import demands and clean energy transitions: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
- He, Rui-fang & Zhong, Mei-rui & Huang, Jian-bai, 2021. "The dynamic effects of renewable-energy and fossil-fuel technological progress on metal consumption in the electric power industry," Resources Policy, Elsevier, vol. 71(C).
- Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
- Islam, Md. Monirul & Sohag, Kazi & Alam, Md. Mahmudul, 2022.
"Mineral import demand and clean energy transitions in the top mineral-importing countries,"
Resources Policy, Elsevier, vol. 78(C).
- Islam, Monirul & Sohag, Kazi & Alam, Md. Mahmudul, 2022. "Mineral Import Demand and Clean Energy Transitions in the Top Mineral Importing Countries," OSF Preprints kbj69, Center for Open Science.
- Tessa Lee & Yuan Yao & Thomas E. Graedel & Alessio Miatto, 2024. "Critical material requirements and recycling opportunities for US wind and solar power generation," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 527-541, June.
- C, O. Mauricio Hernandez & Shadman, Milad & Amiri, Mojtaba Maali & Silva, Corbiniano & Estefen, Segen F. & La Rovere, Emilio, 2021. "Environmental impacts of offshore wind installation, operation and maintenance, and decommissioning activities: A case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Chen, Jinyu & Luo, Qian & Tu, Yan & Ren, Xiaohang & Naderi, Niki, 2023. "Renewable energy transition and metal consumption: Dynamic evolution analysis based on transnational data," Resources Policy, Elsevier, vol. 85(PB).
- Islam, Md. Monirul & Sohag, Kazi & Mariev, Oleg, 2024. "Mineral import demand-driven solar energy generation in China: A threshold estimation using the counterfactual shock approach," Renewable Energy, Elsevier, vol. 221(C).
- Elshkaki, Ayman, 2020. "Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications," Energy, Elsevier, vol. 202(C).
- Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
- Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
More about this item
Keywords
Offshore wind energy (OWE); Wind turbine; Foundation; Material demand; Rare earth elements (REEs); Recycling; Material flow analysis (MFA); Circular design (CD);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:164:y:2022:i:c:s1364032122004993. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.