IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v93y2014icp75-84.html
   My bibliography  Save this article

Management of used lead acid battery in China: Secondary lead industry progress, policies and problems

Author

Listed:
  • Tian, Xi
  • Gong, Yu
  • Wu, Yufeng
  • Agyeiwaa, Amma
  • Zuo, Tieyong

Abstract

The amount of used lead acid batteries rises along with the rapid development of battery manufacture in China. The battery manufacture and recycling industry has developed sharply in these recent 5 years. The annual production of secondary lead from used lead acid batteries in China increased rapidly to 1.5 million tonnes (MT) in 2013, making china the world's largest secondary lead producer. Secondary lead enterprises are mainly located in the middle and eastern regions of China, with a legal production capacity of 3MT/year. Environmental pollution problems began to happen frequently from 2009. After 2011, the government began to put in efforts to promote pollution control, eliminate outdated production capacity, support advanced production and technology innovation research, and has achieved remarkable results. However, the main existing problems are that the proportion of secondary lead production is only 30% of the total lead production, no formal recycling network has been established and the overall level of industrial technology and equipment is outdated. Compared with developed countries, this paper predicts that, secondary proportion will reach 44% in 2015 and 60% in 2028. Finally some countermeasures are given to the recycling mode and technology promotion.

Suggested Citation

  • Tian, Xi & Gong, Yu & Wu, Yufeng & Agyeiwaa, Amma & Zuo, Tieyong, 2014. "Management of used lead acid battery in China: Secondary lead industry progress, policies and problems," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 75-84.
  • Handle: RePEc:eee:recore:v:93:y:2014:i:c:p:75-84
    DOI: 10.1016/j.resconrec.2014.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914002262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cherry, Christopher R. & Weinert, Jonathan X. & Yang, Xinmiao, 2009. "Comparative Environmental Impacts of Electric Bikes in China," Institute of Transportation Studies, Working Paper Series qt16k918sh, Institute of Transportation Studies, UC Davis.
    2. Jiansu Mao & Zhongwu LU & Zhifeng Yang, 2006. "The Eco‐efficiency of Lead in China's Lead‐Acid Battery System," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 185-197, January.
    3. Weinert, Jonathan X. & Ogden, Joan M. & Sperling, Dan & Burke, Andy, 2008. "The future of electric two-wheelers and electric vehicles in China," Institute of Transportation Studies, Working Paper Series qt0d05f8v9, Institute of Transportation Studies, UC Davis.
    4. Weinert, Jonathan & Ogden, Joan & Sperling, Dan & Burke, Andrew, 2008. "The future of electric two-wheelers and electric vehicles in China," Energy Policy, Elsevier, vol. 36(7), pages 2544-2555, July.
    5. Junqing Pan & Yanzhi Sun & Wei Li & James Knight & Arumugam Manthiram, 2013. "A green lead hydrometallurgical process based on a hydrogen-lead oxide fuel cell," Nature Communications, Nature, vol. 4(1), pages 1-6, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Semeraro, Concetta & Aljaghoub, Haya & Abdelkareem, Mohammad Ali & Alami, Abdul Hai & Olabi, A.G., 2023. "Digital twin in battery energy storage systems: Trends and gaps detection through association rule mining," Energy, Elsevier, vol. 273(C).
    2. Xin Zan & Deyuan Zhang, 2022. "Analysis on the Optimal Recycling Path of Chinese Lead-Acid Battery under the Extended Producer Responsibility System," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    3. Li, Yanping & Su, Zhen & Qiao, Qi & Hu, Xuewen & Wan, Si & Zhao, Ruonan, 2017. "Integrated assessment of process pollution prevention and end-of-pipe control in secondary lead smelting," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 1-11.
    4. Zhanbin Luo & Jing Ma & Fu Chen & Xiaoxiao Li & Shaoliang Zhang, 2018. "Effects of Pb Smelting on the Soil Bacterial Community near a Secondary Lead Plant," IJERPH, MDPI, vol. 15(5), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kishimoto, Paul N. & Zhang, Da & Zhang, Xiliang & Karplus, Valerie J., 2013. "Modeling regional transportation demand in China and the impacts of a national carbon constraint," Conference papers 332390, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Wells, Peter & Lin, Xiao, 2015. "Spontaneous emergence versus technology management in sustainable mobility transitions: Electric bicycles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 371-383.
    3. Geoffrey Rose, 2012. "E-bikes and urban transportation: emerging issues and unresolved questions," Transportation, Springer, vol. 39(1), pages 81-96, January.
    4. Jago Dodson, 2014. "Suburbia under an Energy Transition: A Socio-technical Perspective," Urban Studies, Urban Studies Journal Limited, vol. 51(7), pages 1487-1505, May.
    5. Walker, Paul D. & Roser, Holger M., 2015. "Energy consumption and cost analysis of hybrid electric powertrain configurations for two wheelers," Applied Energy, Elsevier, vol. 146(C), pages 279-287.
    6. Gihan Ekanayake & Mahesh Suresh Patil & Jae-Hyeong Seo & Moo-Yeon Lee, 2018. "Numerical Study on Heat Transfer Characteristics of the 36V Electronic Control Unit System for an Electric Bicycle," Energies, MDPI, vol. 11(10), pages 1-17, September.
    7. Ou, Shiqi & Hao, Xu & Lin, Zhenhong & Wang, Hewu & Bouchard, Jessey & He, Xin & Przesmitzki, Steven & Wu, Zhixin & Zheng, Jihu & Lv, Renzhi & Qi, Liang & LaClair, Tim J., 2019. "Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 747-761.
    8. Paul Plazier & Gerd Weitkamp & Agnes van den Berg, 2023. "E-bikes in rural areas: current and potential users in the Netherlands," Transportation, Springer, vol. 50(4), pages 1449-1470, August.
    9. Chen, Ching-Fu & Eccarius, Timo & Su, Pin-Chi, 2021. "The role of environmental concern in forming intentions for switching to electric scooters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 129-144.
    10. Xu, X.M. & He, R., 2014. "Review on the heat dissipation performance of battery pack with different structures and operation conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 301-315.
    11. Babar, Abdul Haseeb Khan & Ali, Yousaf, 2021. "Enhancement of electric vehicles’ market competitiveness using fuzzy quality function deployment," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    12. Patyal, Vishal Singh & Kumar, Ravi & Kushwah, Shiksha, 2021. "Modeling barriers to the adoption of electric vehicles: An Indian perspective," Energy, Elsevier, vol. 237(C).
    13. Jun Li & Jiachao Shen & Bicen Jia, 2021. "Exploring Intention to Use Shared Electric Bicycles by the Extended Theory of Planned Behavior," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    14. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    15. Xiaozhou Ye, 2022. "Bike-Sharing Adoption in Cross-National Contexts: An Empirical Research on the Factors Affecting Users’ Intentions," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    16. Li, Xintong & Han, Chunyang & Huang, Helai & Pervez, Amjad & Xu, Guangming & Hu, Cheng & Jiang, Qianshan & Wei, Yulu, 2023. "Pursuing higher acceptability and compliance for electric two-wheeler standardization policy in China: The importance of socio-demographic characteristics, psychological factors, and travel habits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    17. John Humphrey & Ke Ding & Mai Fujita & Shiro Hioki & Koichiro Kimura, 2018. "Platforms, Innovation and Capability Development in the Chinese Domestic Market," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 30(3), pages 408-423, July.
    18. Siavash Khalili & Eetu Rantanen & Dmitrii Bogdanov & Christian Breyer, 2019. "Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World," Energies, MDPI, vol. 12(20), pages 1-54, October.
    19. Tanto Adi Waluyo & Muhammad Zudhy Irawan & Dewanti, 2022. "Adopting Electric Motorcycles for Ride-Hailing Services: Influential Factors from Driver’s Perspective," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    20. Mendoza, Joan-Manuel F. & Sanyé-Mengual, Esther & Angrill, Sara & García-Lozano, Raúl & Feijoo, Gumersindo & Josa, Alejandro & Gabarrell, Xavier & Rieradevall, Joan, 2015. "Development of urban solar infrastructure to support low-carbon mobility," Energy Policy, Elsevier, vol. 85(C), pages 102-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:93:y:2014:i:c:p:75-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.