IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v192y2024ics1364032123010754.html
   My bibliography  Save this article

Material-energy Nexus: A systematic literature review

Author

Listed:
  • Hu, Xueyue
  • Wang, Chunying
  • Elshkaki, Ayman

Abstract

A low-carbon future based on renewable energy systems is required to limit global warming to 1.5 °C above pre-industrial levels by the end of this century. However, economy-wide decarbonisation is projected to be highly material and energy intensive. Understanding the material-energy nexus through existing research would offer valuable insights for comprehensive resource management to achieve sustainable climate mitigation. This study provides the first systematic review of material-energy nexus literature published between 2002 and 2022, emphasising the interconnections and feedback loops between material and energy systems. The global knowledge-stock is comprehensively assessed regarding research focus, sustainability challenges, and corresponding circular economy strategies. Additionally, significant gaps in the research agenda and key policy implications for both material consuming-developed countries and producing-developing countries are proposed. Findings of this study underscore the vital role of international cooperation in managing primary and secondary material supply chains, grounded in the “common but differentiated responsibilities” principle under the Paris Agreement. Consuming-developed countries should support producing-developing countries in building renewable energy capacity, optimising energy saving technologies and measures, and adhering to high environmental standards for resources extraction and production. Meanwhile, both consuming-developed countries and producing-developing countries should take domestic mitigation measures. The former should focus on changing consumption behaviour, and the latter on increasing resource efficiency.

Suggested Citation

  • Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010754
    DOI: 10.1016/j.rser.2023.114217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123010754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
    2. Lin, Boqiang & Wu, Ya & Zhang, Li, 2011. "Estimates of the potential for energy conservation in the Chinese steel industry," Energy Policy, Elsevier, vol. 39(6), pages 3680-3689, June.
    3. Olivier Vidal & Fatma Rostom & Cyril François & Gael Giraud, 2017. "Global Trends in Metal Consumption and Supply: The Raw Material–Energy Nexus," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03903919, HAL.
    4. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
    5. Månberger, André & Stenqvist, Björn, 2018. "Global metal flows in the renewable energy transition: Exploring the effects of substitutes, technological mix and development," Energy Policy, Elsevier, vol. 119(C), pages 226-241.
    6. Fthenakis, Vasilis, 2009. "Sustainability of photovoltaics: The case for thin-film solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2746-2750, December.
    7. Hoenderdaal, Sander & Tercero Espinoza, Luis & Marscheider-Weidemann, Frank & Graus, Wina, 2013. "Can a dysprosium shortage threaten green energy technologies?," Energy, Elsevier, vol. 49(C), pages 344-355.
    8. Choi, Chul Hun & Cao, Jinjian & Zhao, Fu, 2016. "System Dynamics Modeling of Indium Material Flows under Wide Deployment of Clean Energy Technologies," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 59-71.
    9. Xiao, Shijiang & Geng, Yong & Rui, Xue & Su, Chang & Yao, Tianli, 2022. "Behind of the criticality for rare earth elements: Surplus of China’s yttrium," Resources Policy, Elsevier, vol. 76(C).
    10. Fizaine, Florian, 2013. "Byproduct production of minor metals: Threat or opportunity for the development of clean technologies? The PV sector as an illustration," Resources Policy, Elsevier, vol. 38(3), pages 373-383.
    11. Tokimatsu, Koji & Wachtmeister, Henrik & McLellan, Benjamin & Davidsson, Simon & Murakami, Shinsuke & Höök, Mikael & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2°C target," Applied Energy, Elsevier, vol. 207(C), pages 494-509.
    12. Yawen Han & Wanli Xing & Hongchang Hao & Xin Du & Chongyang Liu, 2022. "Interprovincial Metal and GHG Transfers Embodied in Electricity Transmission across China: Trends and Driving Factors," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    13. Emmanuel Hache & Marine Simoën & Gondia Sokhna Seck & Clément Bonnet & Aymen Jabberi, 2020. "The impact of future power generation on cement demand: An international and regional assessment based on climate scenarios," International Economics, CEPII research center, issue 163, pages 114-133.
    14. Davidsson, Simon & Höök, Mikael, 2017. "Material requirements and availability for multi-terawatt deployment of photovoltaics," Energy Policy, Elsevier, vol. 108(C), pages 574-582.
    15. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    16. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    17. Alexey Cherepovitsyn & Victoria Solovyova, 2022. "Prospects for the Development of the Russian Rare-Earth Metal Industry in View of the Global Energy Transition—A Review," Energies, MDPI, vol. 15(1), pages 1-24, January.
    18. Lu, Bin & Liu, Jingru & Yang, Jianxin, 2017. "Substance flow analysis of lithium for sustainable management in mainland China: 2007–2014," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 109-116.
    19. Mousa, Elsayed & Wang, Chuan & Riesbeck, Johan & Larsson, Mikael, 2016. "Biomass applications in iron and steel industry: An overview of challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1247-1266.
    20. Haas, Jannik & Moreno-Leiva, Simón & Junne, Tobias & Chen, Po-Jung & Pamparana, Giovanni & Nowak, Wolfgang & Kracht, Willy & Ortiz, Julián M., 2020. "Copper mining: 100% solar electricity by 2030?," Applied Energy, Elsevier, vol. 262(C).
    21. Raimund Bleischwitz & Catalina Spataru & Stacy D. VanDeveer & Michael Obersteiner & Ester Voet & Corey Johnson & Philip Andrews-Speed & Tim Boersma & Holger Hoff & Detlef P. Vuuren, 2018. "Resource nexus perspectives towards the United Nations Sustainable Development Goals," Nature Sustainability, Nature, vol. 1(12), pages 737-743, December.
    22. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
    23. Doh Dinga, Christian & Wen, Zongguo, 2022. "Many-objective optimization of energy conservation and emission reduction under uncertainty: A case study in China's cement industry," Energy, Elsevier, vol. 253(C).
    24. Elshkaki, Ayman, 2013. "An analysis of future platinum resources, emissions and waste streams using a system dynamic model of its intentional and non-intentional flows and stocks," Resources Policy, Elsevier, vol. 38(3), pages 241-251.
    25. Li, Li & Lu, Yonglong & Shi, Yajuan & Wang, Tieyu & Luo, Wei & Gosens, Jorrit & Chen, Peng & Li, Haiqian, 2013. "Integrated technology selection for energy conservation and PAHs control in iron and steel industry: Methodology and case study," Energy Policy, Elsevier, vol. 54(C), pages 194-203.
    26. Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Energy commodities, precious metals and industrial metal markets: A nexus across different investment horizons and market conditions," Resources Policy, Elsevier, vol. 70(C).
    27. T. E. Graedel & Barbara K. Reck & Luca Ciacci & Fabrizio Passarini, 2019. "On the Spatial Dimension of the Circular Economy," Resources, MDPI, vol. 8(1), pages 1-10, February.
    28. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    29. Olivier Vidal & Fatma Rostom & Cyril François & Gael Giraud, 2017. "Global Trends in Metal Consumption and Supply: The Raw Material–Energy Nexus," Post-Print hal-03903919, HAL.
    30. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
    31. Kirchherr, Julian & Reike, Denise & Hekkert, Marko, 2017. "Conceptualizing the circular economy: An analysis of 114 definitions," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 221-232.
    32. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    33. He, Kun & Wang, Li, 2017. "A review of energy use and energy-efficient technologies for the iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1022-1039.
    34. Raugei, Marco & Fthenakis, Vasilis, 2010. "Cadmium flows and emissions from CdTe PV: future expectations," Energy Policy, Elsevier, vol. 38(9), pages 5223-5228, September.
    35. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    36. Haberl, Helmut & Schmid, Martin & Haas, Willi & Wiedenhofer, Dominik & Rau, Henrike & Winiwarter, Verena, 2021. "Stocks, flows, services and practices: Nexus approaches to sustainable social metabolism," Ecological Economics, Elsevier, vol. 182(C).
    37. Viebahn, Peter & Soukup, Ole & Samadi, Sascha & Teubler, Jens & Wiesen, Klaus & Ritthoff, Michael, 2015. "Assessing the need for critical minerals to shift the German energy system towards a high proportion of renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 655-671.
    38. Hasanbeigi, Ali & Morrow, William & Sathaye, Jayant & Masanet, Eric & Xu, Tengfang, 2013. "A bottom-up model to estimate the energy efficiency improvement and CO2 emission reduction potentials in the Chinese iron and steel industry," Energy, Elsevier, vol. 50(C), pages 315-325.
    39. Goe, Michele & Gaustad, Gabrielle, 2014. "Identifying critical materials for photovoltaics in the US: A multi-metric approach," Applied Energy, Elsevier, vol. 123(C), pages 387-396.
    40. Elshkaki, Ayman, 2020. "Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications," Energy, Elsevier, vol. 202(C).
    41. Guohua, Yuan & Elshkaki, Ayman & Xiao, Xi, 2021. "Dynamic analysis of future nickel demand, supply, and associated materials, energy, water, and carbon emissions in China," Resources Policy, Elsevier, vol. 74(C).
    42. Kavlak, Goksin & Graedel, T.E., 2013. "Global anthropogenic selenium cycles for 1940–2010," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 17-22.
    43. Yupeng Liu & Wei-Qiang Chen & Tao Lin & Lijie Gao, 2019. "How Spatial Analysis Can Help Enhance Material Stocks and Flows Analysis?," Resources, MDPI, vol. 8(1), pages 1-8, March.
    44. Tian, Shuoshuo & Di, Yuezhong & Dai, Min & Chen, Weiqiang & Zhang, Qi, 2022. "Comprehensive assessment of energy conservation and CO2 emission reduction in future aluminum supply chain," Applied Energy, Elsevier, vol. 305(C).
    45. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna Mo, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Post-Print hal-02380468, HAL.
    46. Peng Wang & Morten Ryberg & Yi Yang & Kuishuang Feng & Sami Kara & Michael Hauschild & Wei-Qiang Chen, 2021. "Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    47. Anqi Zeng & Wu Chen & Kasper Dalgas Rasmussen & Xuehong Zhu & Maren Lundhaug & Daniel B. Müller & Juan Tan & Jakob K. Keiding & Litao Liu & Tao Dai & Anjian Wang & Gang Liu, 2022. "Battery technology and recycling alone will not save the electric mobility transition from future cobalt shortages," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    48. David Font Vivanco & Ranran Wang & Edgar Hertwich, 2018. "Nexus Strength: A Novel Metric for Assessing the Global Resource Nexus," Journal of Industrial Ecology, Yale University, vol. 22(6), pages 1473-1486, December.
    49. Luis Gabriel Carmona & Kai Whiting & Helmut Haberl & Tânia Sousa, 2021. "The use of steel in the United Kingdom's transport sector: A stock–flow–service nexus case study," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 125-143, February.
    50. Ester Van der Voet & Lauran Van Oers & Miranda Verboon & Koen Kuipers, 2019. "Environmental Implications of Future Demand Scenarios for Metals: Methodology and Application to the Case of Seven Major Metals," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 141-155, February.
    51. Roelich, Katy & Dawson, David A. & Purnell, Phil & Knoeri, Christof & Revell, Ruairi & Busch, Jonathan & Steinberger, Julia K., 2014. "Assessing the dynamic material criticality of infrastructure transitions: A case of low carbon electricity," Applied Energy, Elsevier, vol. 123(C), pages 378-386.
    52. Hasanbeigi, Ali & Morrow, William & Masanet, Eric & Sathaye, Jayant & Xu, Tengfang, 2013. "Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China," Energy Policy, Elsevier, vol. 57(C), pages 287-297.
    53. Marc van der Meide & Carina Harpprecht & Stephen Northey & Yongxiang Yang & Bernhard Steubing, 2022. "Effects of the energy transition on environmental impacts of cobalt supply: A prospective life cycle assessment study on future supply of cobalt," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1631-1645, October.
    54. Kleijn, Rene & van der Voet, Ester, 2010. "Resource constraints in a hydrogen economy based on renewable energy sources: An exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2784-2795, December.
    55. Tomer Fishman & T. E. Graedel, 2019. "Impact of the establishment of US offshore wind power on neodymium flows," Nature Sustainability, Nature, vol. 2(4), pages 332-338, April.
    56. Guo, Z.C. & Fu, Z.X., 2010. "Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China," Energy, Elsevier, vol. 35(11), pages 4356-4360.
    57. Bustamante, Michele L. & Gaustad, Gabrielle, 2014. "Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics," Applied Energy, Elsevier, vol. 123(C), pages 397-414.
    58. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    59. Elshkaki, Ayman & Graedel, T.E., 2014. "Dysprosium, the balance problem, and wind power technology," Applied Energy, Elsevier, vol. 136(C), pages 548-559.
    60. Moreno-Leiva, Simón & Haas, Jannik & Nowak, Wolfgang & Kracht, Willy & Eltrop, Ludger & Breyer, Christian, 2021. "Integration of seawater pumped storage and desalination in multi-energy systems planning: The case of copper as a key material for the energy transition," Applied Energy, Elsevier, vol. 299(C).
    61. Bartzas, Georgios & Komnitsas, Kostas, 2015. "Life cycle assessment of ferronickel production in Greece," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 113-122.
    62. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).
    63. Pavel, Claudiu C. & Lacal-Arántegui, Roberto & Marmier, Alain & Schüler, Doris & Tzimas, Evangelos & Buchert, Matthias & Jenseit, Wolfgang & Blagoeva, Darina, 2017. "Substitution strategies for reducing the use of rare earths in wind turbines," Resources Policy, Elsevier, vol. 52(C), pages 349-357.
    64. Na, Hongming & Sun, Jingchao & Qiu, Ziyang & Yuan, Yuxing & Du, Tao, 2022. "Optimization of energy efficiency, energy consumption and CO2 emission in typical iron and steel manufacturing process," Energy, Elsevier, vol. 257(C).
    65. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel & Ascaso, Sonia & Palacios, Jose-Luis, 2018. "Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways," Energy, Elsevier, vol. 159(C), pages 1175-1184.
    66. Stefan Pauliuk & Niko Heeren, 2021. "Material efficiency and its contribution to climate change mitigation in Germany: A deep decarbonization scenario analysis until 2060," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 479-493, April.
    67. Grandell, Leena & Lehtilä, Antti & Kivinen, Mari & Koljonen, Tiina & Kihlman, Susanna & Lauri, Laura S., 2016. "Role of critical metals in the future markets of clean energy technologies," Renewable Energy, Elsevier, vol. 95(C), pages 53-62.
    68. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
    69. Sanya Carley & David M. Konisky, 2020. "The justice and equity implications of the clean energy transition," Nature Energy, Nature, vol. 5(8), pages 569-577, August.
    70. García-Olivares, Antonio & Ballabrera-Poy, Joaquim & García-Ladona, Emili & Turiel, Antonio, 2012. "A global renewable mix with proven technologies and common materials," Energy Policy, Elsevier, vol. 41(C), pages 561-574.
    71. Gunnar Luderer & Michaja Pehl & Anders Arvesen & Thomas Gibon & Benjamin L. Bodirsky & Harmen Sytze de Boer & Oliver Fricko & Mohamad Hejazi & Florian Humpenöder & Gokul Iyer & Silvana Mima & Ioanna M, 2019. "Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    72. Watari, Takuma & Yokoi, Ryosuke, 2021. "International inequality in in-use metal stocks: What it portends for the future," Resources Policy, Elsevier, vol. 70(C).
    73. Wang, Xiaoyang, 2022. "Efficient markets are more connected: An entropy-based analysis of the energy, industrial metal and financial markets," Energy Economics, Elsevier, vol. 111(C).
    74. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
    75. Lee, J. & Bazilian, M. & Sovacool, B. & Hund, K. & Jowitt, S.M. & Nguyen, T.P. & Månberger, A. & Kah, M. & Greene, S. & Galeazzi, C. & Awuah-Offei, K. & Moats, M. & Tilton, J. & Kukoda, S., 2020. "Reviewing the material and metal security of low-carbon energy transitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    76. Arens, M. & Worrell, E., 2014. "Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption," Energy, Elsevier, vol. 73(C), pages 968-977.
    77. Niamir, Leila & Filatova, Tatiana & Voinov, Alexey & Bressers, Hans, 2018. "Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes," Energy Policy, Elsevier, vol. 118(C), pages 325-345.
    78. Pihl, Erik & Kushnir, Duncan & Sandén, Björn & Johnsson, Filip, 2012. "Material constraints for concentrating solar thermal power," Energy, Elsevier, vol. 44(1), pages 944-954.
    79. Helbig, Christoph & Bradshaw, Alex M. & Kolotzek, Christoph & Thorenz, Andrea & Tuma, Axel, 2016. "Supply risks associated with CdTe and CIGS thin-film photovoltaics," Applied Energy, Elsevier, vol. 178(C), pages 422-433.
    80. Di Dong & Arnold Tukker & Ester Van der Voet, 2019. "Modeling copper demand in China up to 2050: A business‐as‐usual scenario based on dynamic stock and flow analysis," Journal of Industrial Ecology, Yale University, vol. 23(6), pages 1363-1380, December.
    81. Ona Egbue & Suzanna Long & Seong Dae Kim, 2022. "Resource Availability and Implications for the Development of Plug-In Electric Vehicles," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    82. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    2. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Elshkaki, Ayman, 2020. "Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications," Energy, Elsevier, vol. 202(C).
    4. Teixeira, Bernardo & Brito, Miguel Centeno & Mateus, António, 2024. "Raw materials for the Portuguese decarbonization roadmap: The case of solar photovoltaics and wind energy," Resources Policy, Elsevier, vol. 90(C).
    5. Kim Maya Yavor & Vanessa Bach & Matthias Finkbeiner, 2021. "Resource Assessment of Renewable Energy Systems—A Review," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    6. Ren, Kaipeng & Tang, Xu & Höök, Mikael, 2021. "Evaluating metal constraints for photovoltaics: Perspectives from China’s PV development," Applied Energy, Elsevier, vol. 282(PA).
    7. Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
    8. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    9. Elshkaki, Ayman, 2023. "The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios," Energy, Elsevier, vol. 267(C).
    10. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
    11. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    12. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
    13. Song, Huiling & Wang, Chang & Sun, Kun & Geng, Hongjun & Zuo, Lyushui, 2023. "Material efficiency strategies across the industrial chain to secure indium availability for global carbon neutrality," Resources Policy, Elsevier, vol. 85(PB).
    14. Zheng, Biao & Zhang, Yuquan & Chen, Yufeng, 2021. "Asymmetric connectedness and dynamic spillovers between renewable energy and rare earth markets in China: Evidence from firms’ high-frequency data," Resources Policy, Elsevier, vol. 71(C).
    15. Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Miller, Hugh & Dikau, Simon & Svartzman, Romain & Dees, Stéphane, 2023. "The stumbling block in ‘the race of our lives’: transition-critical materials, financial risks and the NGFS climate scenarios," LSE Research Online Documents on Economics 118095, London School of Economics and Political Science, LSE Library.
    17. Beibei Che & Chaofeng Shao & Zhirui Lu & Binghong Qian & Sihan Chen, 2022. "Mineral Requirements for China’s Energy Transition to 2060—Focus on Electricity and Transportation," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    18. Song, Huiling & Wang, Chang & Lei, Xiaojie & Zhang, Hongwei, 2022. "Dynamic dependence between main-byproduct metals and the role of clean energy market," Energy Economics, Elsevier, vol. 108(C).
    19. Islam, Md. Monirul & Sohag, Kazi & Hammoudeh, Shawkat & Mariev, Oleg & Samargandi, Nahla, 2022. "Minerals import demands and clean energy transitions: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
    20. Choi, Chul Hun & Kim, Sang-Phil & Lee, Seokcheon & Zhao, Fu, 2020. "Game theoretic production decisions of by-product materials critical for clean energy technologies - Indium as a case study," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:192:y:2024:i:c:s1364032123010754. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.