IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3234-d1426950.html
   My bibliography  Save this article

Promoting Decarbonization in China: Revealing the Impact of Various Energy Policies on the Power Sector Based on a Coupled Model

Author

Listed:
  • Minwei Liu

    (Planning & Research Center for Power Grid, Yunnan Power Grid Corp., Kunming 650011, China)

  • Lang Tang

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Jincan Zeng

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Guori Huang

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Xi Liu

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Shangheng Yao

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Gengsheng He

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Nan Shang

    (Energy Development Research Institute, China Southern Power Grid, Guangzhou 510663, China)

  • Hai Tao

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Songyan Ren

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Peng Wang

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract

The carbon emissions of the power industry account for over 50% of China’s total carbon emissions, so achieving carbon peak and carbon neutrality in the power sector is crucial. This study aims to simulate the impacts of three energy policies—carbon constraints, the development of a high proportion of renewable energy, and carbon trading—on China’s energy transition, economic development, and the power sector’s energy mix. Through the construction of a dynamic computable general equilibrium (CGE) model for China and its integration with the SWITCH-China electricity model, the impact of diverse energy policies on China’s energy transition, economic progress, and the power mix within the electricity industry has been simulated. The integration of the SWITCH-China model can address the limitations of the CGE model in providing a detailed understanding of the specific intricacies of the electricity sector. The results indicate that increasing the stringency of carbon restrictions compels a reduction in fossil energy use, controlling the output of coal-fired power units, and thereby reducing carbon emissions. The development of a high proportion of renewable energy enhances the cleanliness of the power sector’s generation structure, further promoting the national energy transition. Implementing a carbon trading policy, where the entire industry shares the burden of carbon reduction costs, can effectively mitigate the economic losses of the power sector. Finally, the policies to further enhance the implementation of carbon trading policies, strengthen effective governmental regulation, and escalate the deployment of renewable energy sources are recommended.

Suggested Citation

  • Minwei Liu & Lang Tang & Jincan Zeng & Guori Huang & Xi Liu & Shangheng Yao & Gengsheng He & Nan Shang & Hai Tao & Songyan Ren & Peng Wang, 2024. "Promoting Decarbonization in China: Revealing the Impact of Various Energy Policies on the Power Sector Based on a Coupled Model," Energies, MDPI, vol. 17(13), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3234-:d:1426950
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xiaoli & Cui, Xueqin & Li, Bo & Hidalgo-Gonzalez, Patricia & Kammen, Daniel M & Zou, Ji & Wang, Ke, 2022. "Immediate actions on coal phaseout enable a just low-carbon transition in China’s power sector," Applied Energy, Elsevier, vol. 308(C).
    2. Kozlova, M. & Overland, I., 2022. "Combining capacity mechanisms and renewable energy support: A review of the international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Jiang, Hong-Dian & Dong, Kangyin & Qing, Jing & Teng, Qiang, 2023. "The role of technical change in low-carbon transformation and crises in the electricity market: A CGE analysis with R&D investment," Energy Economics, Elsevier, vol. 125(C).
    4. Mei, H. & Li, Y.P. & Suo, C. & Ma, Y. & Lv, J., 2020. "Analyzing the impact of climate change on energy-economy-carbon nexus system in China," Applied Energy, Elsevier, vol. 262(C).
    5. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sufian Eltayeb Mohamed Abdel-Gadir & Mwahib Gasmelsied Ahmed Mohammed, 2024. "Oman’s Green Horizon: Steering Towards Sustainability Through Decarbonization and Energy Transition," Sustainability, MDPI, vol. 16(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Y. & Li, Y.P. & Huang, G.H., 2023. "Planning China’s non-deterministic energy system (2021–2060) to achieve carbon neutrality," Applied Energy, Elsevier, vol. 334(C).
    2. Zhou, Xinxing & Gao, Yan & Wang, Ping & Zhu, Bangzhu & Wu, Zhanchi, 2022. "Does herding behavior exist in China's carbon markets?," Applied Energy, Elsevier, vol. 308(C).
    3. Dongwang Zhang & Tuo Zhou & Zhihong Liu & Hairui Yang & Rushan Bie & Man Zhang, 2024. "Matching Analysis of Technical Parameters and Safety Standards for Nuclear Replacement of Coal-Fired Units," Energies, MDPI, vol. 17(22), pages 1-15, November.
    4. Deng, Xu & Lv, Tao & Meng, Xiangyun & Li, Cong & Hou, Xiaoran & Xu, Jie & Wang, Yinhao & Liu, Feng, 2024. "Assessing the carbon emission reduction effect of flexibility option for integrating variable renewable energy," Energy Economics, Elsevier, vol. 132(C).
    5. Jiang, Hong-Dian & Pradhan, Basanta K. & Dong, Kangyin & Yu, Yan-Yan & Liang, Qiao-Mei, 2024. "An economy-wide impacts of multiple mitigation pathways toward carbon neutrality in China: A CGE-based analysis," Energy Economics, Elsevier, vol. 129(C).
    6. Gebara, C.H. & Laurent, A., 2023. "National SDG-7 performance assessment to support achieving sustainable energy for all within planetary limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Yang, Yi & Qin, Huan, 2024. "The uncertainties of the carbon peak and the temporal and regional heterogeneity of its driving factors in China," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    8. Dai, Zhifeng & Hu, Juan & Liu, Xinheng & Yang, Mi, 2024. "ynamic time-domain and frequency-domain spillovers and portfolio strategies between climate change attention and energy-relevant markets," Energy Economics, Elsevier, vol. 134(C).
    9. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    10. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    11. Huo, Tengfei & Du, Qianxi & Xu, Linbo & Shi, Qingwei & Cong, Xiaobo & Cai, Weiguang, 2023. "Timetable and roadmap for achieving carbon peak and carbon neutrality of China's building sector," Energy, Elsevier, vol. 274(C).
    12. Yuxue Zhang & Rui Wang & Xingyuan Yang & He Zhang, 2023. "Can China Achieve Its Carbon Emission Peak Target? Empirical Evidence from City-Scale Driving Factors and Emission Reduction Strategies," Land, MDPI, vol. 12(6), pages 1-21, May.
    13. Makasis, Nikolas & Gu, Xiaoying & Kreitmair, Monika J. & Narsilio, Guillermo A. & Choudhary, Ruchi, 2023. "Geothermal pavements: A city-scale investigation on providing sustainable heating for the city of Cardiff, UK," Renewable Energy, Elsevier, vol. 218(C).
    14. Rosa Virginia Encinas Quille & Felipe Valencia de Almeida & Mauro Yuji Ohara & Pedro Luiz Pizzigatti Corrêa & Leandro Gomes de Freitas & Solange Nice Alves-Souza & Jorge Rady de Almeida & Maggie Davis, 2023. "Architecture of a Data Portal for Publishing and Delivering Open Data for Atmospheric Measurement," IJERPH, MDPI, vol. 20(7), pages 1-20, April.
    15. Zhang, Boling & Wang, Qian & Wang, Sixia & Tong, Ruipeng, 2023. "Coal power demand and paths to peak carbon emissions in China: A provincial scenario analysis oriented by CO2-related health co-benefits," Energy, Elsevier, vol. 282(C).
    16. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Zhe Zhao & Xin Xuan & Fan Zhang & Ying Cai & Xiaoyu Wang, 2022. "Scenario Analysis of Renewable Energy Development and Carbon Emission in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 11(10), pages 1-13, September.
    18. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
    19. Lan, Xinyao & Jin, Jiahui & Xu, Beibei & Chen, Diyi & Egusquiza, Mònica & Kim, Jin-Hyuk & Egusquiza, Eduard & Jafar, Nejadali & Xu, Lin & Kuang, Yuan, 2022. "Physical model test and parametric optimization of a hydroelectric generating system with a coaxial shaft surge tank," Renewable Energy, Elsevier, vol. 200(C), pages 880-899.
    20. Guo, Zhi & Mao, Xianqiang & Lu, Jianhong & Gao, Yubing & Chen, Xing & Zhang, Shining & Ma, Zhiyuan, 2024. "Can a new power system create more employment in China?," Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3234-:d:1426950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.