IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56497-3.html
   My bibliography  Save this article

Degeneracy-breaking and long-lived multimode microwave electromechanical systems enabled by cubic silicon-carbide membrane crystals

Author

Listed:
  • Yulong Liu

    (Beijing Academy of Quantum Information Sciences
    Aalto University)

  • Huanying Sun

    (Beijing Academy of Quantum Information Sciences)

  • Qichun Liu

    (Beijing Academy of Quantum Information Sciences)

  • Haihua Wu

    (Beijing Academy of Quantum Information Sciences)

  • Mika A. Sillanpää

    (Aalto University)

  • Tiefu Li

    (Tsinghua University)

Abstract

Cubic silicon-carbide crystals (3C-SiC), known for their high thermal conductivity and in-plane stress, hold significant promise for the development of high-quality (Q) mechanical oscillators. We reveal degeneracy-breaking phenomena in 3C-phase crystalline silicon-carbide membrane and present high-Q mechanical modes in pairs or clusters. The 3C-SiC material demonstrates excellent microwave compatibility with superconducting circuits. Thus, we can establish a coherent electromechanical interface, enabling precise control over 21 high-Q mechanical modes from a single 3C-SiC square membrane. Benefiting from extremely high mechanical frequency stability, this interface enables tunable light slowing with group delays extending up to an impressive duration of an hour. Coherent energy transfer between distinct mechanical modes are also presented. In this work, the studied 3C-SiC membrane crystal with their significant properties of multiple acoustic modes and high-quality factors, provide unique opportunities for the encoding, storage, and transmission of quantum information via bosonic phonon channels.

Suggested Citation

  • Yulong Liu & Huanying Sun & Qichun Liu & Haihua Wu & Mika A. Sillanpää & Tiefu Li, 2025. "Degeneracy-breaking and long-lived multimode microwave electromechanical systems enabled by cubic silicon-carbide membrane crystals," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56497-3
    DOI: 10.1038/s41467-025-56497-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56497-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56497-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56497-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.