IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v589y2021i7840d10.1038_s41586-020-03049-y.html
   My bibliography  Save this article

Single-defect phonons imaged by electron microscopy

Author

Listed:
  • Xingxu Yan

    (University of California, Irvine
    University of California, Irvine)

  • Chengyan Liu

    (University of California, Irvine
    Henan University)

  • Chaitanya A. Gadre

    (University of California, Irvine)

  • Lei Gu

    (University of California, Irvine)

  • Toshihiro Aoki

    (University of California, Irvine)

  • Tracy C. Lovejoy

    (Nion R&D)

  • Niklas Dellby

    (Nion R&D)

  • Ondrej L. Krivanek

    (Nion R&D)

  • Darrell G. Schlom

    (Cornell University
    Kavli Institute at Cornell for Nanoscale Science
    Leibniz-Institut für Kristallzüchtung)

  • Ruqian Wu

    (University of California, Irvine)

  • Xiaoqing Pan

    (University of California, Irvine
    University of California, Irvine
    University of California, Irvine)

Abstract

Crystal defects affect the thermal and heat-transport properties of materials by scattering phonons and modifying phonon spectra1–8. To appreciate how imperfections in solids influence thermal conductivity and diffusivity, it is thus essential to understand phonon–defect interactions. Sophisticated theories are available to explore such interactions, but experimental validation is limited because most phonon-detecting spectroscopic methods do not reach the high spatial resolution needed to resolve local vibrational spectra near individual defects. Here we demonstrate that space- and angle-resolved vibrational spectroscopy in a transmission electron microscope makes it possible to map the vibrational spectra of individual crystal defects. We detect a red shift of several millielectronvolts in the energy of acoustic vibration modes near a single stacking fault in cubic silicon carbide, together with substantial changes in their intensity, and find that these changes are confined to within a few nanometres of the stacking fault. These observations illustrate that the capabilities of a state-of-the-art transmission electron microscope open the door to the direct mapping of phonon propagation around defects, which is expected to provide useful guidance for engineering the thermal properties of materials.

Suggested Citation

  • Xingxu Yan & Chengyan Liu & Chaitanya A. Gadre & Lei Gu & Toshihiro Aoki & Tracy C. Lovejoy & Niklas Dellby & Ondrej L. Krivanek & Darrell G. Schlom & Ruqian Wu & Xiaoqing Pan, 2021. "Single-defect phonons imaged by electron microscopy," Nature, Nature, vol. 589(7840), pages 65-69, January.
  • Handle: RePEc:nat:nature:v:589:y:2021:i:7840:d:10.1038_s41586-020-03049-y
    DOI: 10.1038/s41586-020-03049-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-03049-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-03049-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Su & Shuhai Jia & Junqiang Ren & Xuefeng Lu & Sheng-Wu Guo & Pengfei Guo & Zhixin Cai & De Lu & Min Niu & Lei Zhuang & Kang Peng & Hongjie Wang, 2023. "Strong yet flexible ceramic aerogel," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Zhe Cheng & Ruiyang Li & Xingxu Yan & Glenn Jernigan & Jingjing Shi & Michael E. Liao & Nicholas J. Hines & Chaitanya A. Gadre & Juan Carlos Idrobo & Eungkyu Lee & Karl D. Hobart & Mark S. Goorsky & X, 2021. "Experimental observation of localized interfacial phonon modes," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Ruochen Shi & Qize Li & Xiaofeng Xu & Bo Han & Ruixue Zhu & Fachen Liu & Ruishi Qi & Xiaowen Zhang & Jinlong Du & Ji Chen & Dapeng Yu & Xuetao Zhu & Jiandong Guo & Peng Gao, 2024. "Atomic-scale observation of localized phonons at FeSe/SrTiO3 interface," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Tom Lee & Ji Qi & Chaitanya A. Gadre & Huaixun Huyan & Shu-Ting Ko & Yunxing Zuo & Chaojie Du & Jie Li & Toshihiro Aoki & Ruqian Wu & Jian Luo & Shyue Ping Ong & Xiaoqing Pan, 2023. "Atomic-scale origin of the low grain-boundary resistance in perovskite solid electrolyte Li0.375Sr0.4375Ta0.75Zr0.25O3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Hailing Jiang & Tao Wang & Zhenyu Zhang & Fang Liu & Ruochen Shi & Bowen Sheng & Shanshan Sheng & Weikun Ge & Ping Wang & Bo Shen & Bo Sun & Peng Gao & Lucas Lindsay & Xinqiang Wang, 2024. "Atomic-scale visualization of defect-induced localized vibrations in GaN," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:589:y:2021:i:7840:d:10.1038_s41586-020-03049-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.